Advertisements
Advertisements
प्रश्न
Two balls are drawn from an urn containing 5 green, 3 blue, and 7 yellow balls one by one without replacement. What is the probability that at least one ball is blue?
उत्तर
Total number of balls in the urn = 5 + 3 + 7 = 15
Out of these 12 are non-blue balls.
Two balls can be drawn from 15 balls without replacement in 15C2 = `(15xx14)/(1xx2)` = 105 ways
∴ n(S) =105
Let A be the event that at least one ball is blue.
i.e., 1 blue and other non-blue or both are blue.
∴ n(A) = 3C1 × 12C1 + 3C2
= 3 × 12 + 3
= 36 + 3
= 39
∴ P(A) = `("n"("A"))/("n"("S"))=39/105=13/35`
APPEARS IN
संबंधित प्रश्न
An insurance agent insures lives of 5 men, all of the same age and in good health. The probability that a man of this age will survive the next 30 years is known to be 2/3 . Find the probability that in the next 30 years at most 3 men will survive.
Determine P(E|F).
A coin is tossed three times, where
E: at least two heads, F: at most two heads
A fair die is rolled. Consider events E = {1, 3, 5}, F = {2, 3} and G = {2, 3, 4, 5} Find P ((E ∪ F)|G) and P ((E ∩ G)|G)
A and B are two events such that P (A) ≠ 0. Find P (B|A), if A is a subset of B.
Three cards are drawn at random (without replacement) from a well-shuffled pack of 52 playing cards. Find the probability distribution of the number of red cards. Hence, find the mean of the distribution.
A pair of dice is thrown. If sum of the numbers is an even number, what is the probability that it is a perfect square?
An urn contains 4 black, 5 white, and 6 red balls. Two balls are drawn one after the other without replacement, What is the probability that at least one ball is black?
From a pack of well-shuffled cards, two cards are drawn at random. Find the probability that both the cards are diamonds when first card drawn is kept aside
A problem in Mathematics is given to three students whose chances of solving it are `1/3, 1/4` and `1/5`. What is the probability that the problem is solved?
The probability that a car being filled with petrol will also need an oil change is 0.30; the probability that it needs a new oil filter is 0.40; and the probability that both the oil and filter need changing is 0.15. If the oil had to be changed, what is the probability that a new oil filter is needed?
Given P(A) = 0.4 and P(A ∪ B) = 0.7 Find P(B) if P(B/A) = 0.5
A year is selected at random. What is the probability that it is a leap year which contains 53 Sundays
Choose the correct alternative:
If A and B are any two events, then the probability that exactly one of them occur is
Two dice are thrown. Find the probability that the sum of numbers appearing is more than 11, is ______.
Let A, B be two events such that the probability of A is `3/10` and conditional probability of A given B is `1/2`. The probability that exactly one of the events A or B happen equals.
If for any two events A and B, P(A) = `4/5` and P(A ∩ B) = `7/10`, then `P(B/A)` is equal to ______.
A Problem in Mathematics is given to the three students A, B and C. Their chances of solving the problem are `1/2, 1/3` and `1/4` respectively. Find the probability that at least two of them will solve the problem.
Compute P(A|B), if P(B) = 0.5 and P (A ∩ B) = 0.32.