Advertisements
Advertisements
प्रश्न
From a pack of well-shuffled cards, two cards are drawn at random. Find the probability that both the cards are diamonds when first card drawn is kept aside
उत्तर
In a pack of 52 cards, there are 13 diamond cards.
Let event A: The first card drawn is a diamond card.
∴ P(A) = `(""^13"C"_1)/(""^52"C"_1)`
= `13/52`
= `1/4`
Let event B: The second card drawn is a diamond card.
Since the first diamond card is kept aside, we now have 51 cards, out of which 12 are diamond cards.
∴ Probability that the second card is a diamond card under the condition that the first diamond card is kept aside in the pack
= `"P"("B"//"A")`
= `(""^12"C"_1)/(""^52"C"_1)`
= `12/51`
= `4/17`
∴ Required probability = P(A ∩ B)
= `"P"("B"//"A") * "P"("A")`
= `1/4 xx 4/17`
= `1/17`
APPEARS IN
संबंधित प्रश्न
A fair coin is tossed five times. Find the probability that it shows exactly three times head.
An insurance agent insures lives of 5 men, all of the same age and in good health. The probability that a man of this age will survive the next 30 years is known to be 2/3 . Find the probability that in the next 30 years at most 3 men will survive.
A bag X contains 4 white balls and 2 black balls, while another bag Y contains 3 white balls and 3 black balls. Two balls are drawn (without replacement) at random from one of the bags and were found to be one white and one black. Find the probability that the balls were drawn from bag Y.
Suppose that 80% of all families own a television set. If 5 families are interviewed at random, find the probability that
a. three families own a television set.
b. at least two families own a television set.
If `P(A) = 6/11, P(B) = 5/11 "and" P(A ∪ B) = 7/11` find
- P(A ∩ B)
- P(A|B)
- P(B|A)
A black and a red dice are rolled.
Find the conditional probability of obtaining the sum 8, given that the red die resulted in a number less than 4.
A fair die is rolled. Consider events E = {1, 3, 5}, F = {2, 3} and G = {2, 3, 4, 5} Find P (E|G) and P (G|E)
Given that the two numbers appearing on throwing the two dice are different. Find the probability of the event ‘the sum of numbers on the dice is 4’.
Two balls are drawn at random with replacement from a box containing 10 black and 8 red balls. Find the probability that
- both balls are red.
- first ball is black and second is red.
- one of them is black and other is red.
A and B are two events such that P (A) ≠ 0. Find P (B|A), if A is a subset of B.
A and B are two events such that P (A) ≠ 0. Find P (B|A), if A ∩ B = Φ.
Box I contains two white and three black balls. Box II contains four white and one black balls and box III contains three white ·and four black balls. A dice having three red, two yellow and one green face, is thrown to select the box. If red face turns up, we pick up the box I, if a yellow face turns up we pick up box II, otherwise, we pick up box III. Then, we draw a ball from the selected box. If the ball is drawn is white, what is the probability that the dice had turned up with a red face?
Five dice are thrown simultaneously. If the occurrence of an odd number in a single dice is considered a success, find the probability of maximum three successes.
Three cards are drawn at random (without replacement) from a well-shuffled pack of 52 playing cards. Find the probability distribution of the number of red cards. Hence, find the mean of the distribution.
Two balls are drawn from an urn containing 3 white, 5 red and 2 black balls, one by one without replacement. What is the probability that at least one ball is red?
A pair of dice is thrown. If sum of the numbers is an even number, what is the probability that it is a perfect square?
In an examination, 30% of students have failed in subject I, 20% of the students have failed in subject II and 10% have failed in both subject I and subject II. A student is selected at random, what is the probability that the student has failed in exactly one subject?
A bag contains 10 white balls and 15 black balls. Two balls are drawn in succession without replacement. What is the probability that, first is white and second is black?
Three fair coins are tossed. What is the probability of getting three heads given that at least two coins show heads?
One bag contains 5 white and 3 black balls. Another bag contains 4 white and 6 black balls. If one ball is drawn from each bag, find the probability that both are white
One bag contains 5 white and 3 black balls. Another bag contains 4 white and 6 black balls. If one ball is drawn from each bag, find the probability that both are black
Two thirds of students in a class are boys and rest girls. It is known that the probability of a girl getting a first grade is 0.85 and that of boys is 0.70. Find the probability that a student chosen at random will get first grade marks.
Given P(A) = 0.4 and P(A ∪ B) = 0.7 Find P(B) if A and B are mutually exclusive
Given P(A) = 0.4 and P(A ∪ B) = 0.7 Find P(B) if A and B are independent events
Given P(A) = 0.4 and P(A ∪ B) = 0.7 Find P(B) if P(A/B) = 0.4
A year is selected at random. What is the probability that it contains 53 Sundays
Choose the correct alternative:
If A and B are any two events, then the probability that exactly one of them occur is
In a multiple-choice question, there are three options out of which only one is correct. A person is guessing the answer at random. If there are 7 such questions, then the probability that he will get exactly 4 correct answers is ______
A die is thrown nine times. If getting an odd number is considered as a success, then the probability of three successes is ______
If X denotes the number of ones in five consecutive throws of a dice, then P(X = 4) is ______
Two dice are thrown. Find the probability that the sum of numbers appearing is more than 11, is ______.
Three machines E1, E2, E3 in a certain factory produced 50%, 25% and 25%, respectively, of the total daily output of electric tubes. It is known that 4% of the tubes produced one each of machines E1 and E2 are defective, and that 5% of those produced on E3 are defective. If one tube is picked up at random from a day’s production, calculate the probability that it is defective.
If P(A) = `2/5`, P(B) = `3/10` and P(A ∩ B) = `1/5`, then P(A|B).P(B'|A') is equal to ______.
If P(A) = 0.4, P(B) = 0.8 and P(B|A) = 0.6, then P(A ∪ B) is equal to ______.
A bag contains 6 red and 5 blue balls and another bag contains 5 red and 8 blue balls. A ball is drawn from the first bag and without noticing its colour is placed in the second bag. If a ball is drawn from the second bag, then find the probability that the drawn ball is red in colour.
A Problem in Mathematics is given to the three students A, B and C. Their chances of solving the problem are `1/2, 1/3` and `1/4` respectively. Find the probability that exactly two students will solve the problem.