मराठी

Determine P(E|F). A coin is tossed three times, where E: at least two heads, F: at most two heads - Mathematics

Advertisements
Advertisements

प्रश्न

Determine P(E|F).

A coin is tossed three times, where 

E: at least two heads, F: at most two heads

बेरीज

उत्तर

If a coin is tossed three times, then the sample space 'S' is,

S = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}

Total sample space = 23 = 8.

E: Minimum two heads: {HHH, HTH, THH, HHH}

F: At most one head : P(E ∩ F) = `"Number of events occurring"/"Total number"`

= {TTT, HTT, THT, HTT, HHT, HTH, THH}

∴ E ∩ F = {HHT, HTH, THH}

Hence, `P (E) = 4/8 = 1/2, P(F) = 7/8`

and `P (E cap F) = 3/8`

P(E | F) = `(P(E ∩ F))/(P(F))`

`= (3/8)/(7/8)`

= `3/7`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 13: Probability - Exercise 13.1 [पृष्ठ ५३८]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 13 Probability
Exercise 13.1 | Q 6.2 | पृष्ठ ५३८

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Assume that the chances of a patient having a heart attack is 40%. Assuming that a meditation and yoga course reduces the risk of heart attack by 30% and prescription of certain drug reduces its chance by 25%. At a time a patient can choose any one of the two options with equal probabilities. It is given that after going through one of the two options, the patient selected at random suffers a heart attack. Find the probability that the patient followed a course of meditation and yoga. Interpret the result and state which of the above stated methods is more beneficial for the patient.


The probability that a certain kind of component will survive a check test is 0.6. Find the probability that exactly 2 of the next 4 tested components survive


A bag X contains 4 white balls and 2 black balls, while another bag Y contains 3 white balls and 3 black balls. Two balls are drawn (without replacement) at random from one of the bags and were found to be one white and one black. Find the probability that the balls were drawn from bag Y.


If P(A) = 0.8, P(B) = 0.5 and P(B|A) = 0.4, find

  1. P(A ∩ B)
  2. P(A|B)
  3. P(A ∪ B)

If P(A) = 0.8, P(B) = 0.5 and P(B|A) = 0.4, find P(A|B)


If P(A) = 0.8, P(B) = 0.5 and P(B|A) = 0.4, find  P(A ∪ B)


Determine P(E|F).

A coin is tossed three times, where

E: at most two tails, F: at least one tail


Determine P(E|F).

Two coins are tossed once, where 

E: no tail appears, F: no head appears


Determine P(E|F).

A die is thrown three times,

E: 4 appears on the third toss, F: 6 and 5 appears respectively on first two tosses


If P(A) = `1/2`,  P(B) = 0, then P(A|B) is ______.


Two balls are drawn at random with replacement from a box containing 10 black and 8 red balls. Find the probability that

  1. both balls are red.
  2. first ball is black and second is red.
  3. one of them is black and other is red.

A and B are two events such that P (A) ≠ 0. Find P (B|A), if A ∩ B = Φ.


If a leap year is selected at random, what is the chance that it will contain 53 Tuesdays?


In a game, a man wins a rupee for a six and loses a rupee for any other number when a fair die is thrown. The man decided to throw a die thrice but to quit as and when he gets a six. Find the expected value of the amount he wins/loses.


Suppose we have four boxes. A, B, C and D containing coloured marbles as given below:

Box Marble colour
  Red White Black
A 1 6 3
B 6 2 2
C 8 1 1
D 0 6 4

One of the boxes has been selected at random and a single marble is drawn from it. If the marble is red, what is the probability that it was drawn from box A?, box B?, box C?


Box I contains two white and three black balls. Box II contains four white and one black balls and box III contains three white ·and four black balls. A dice having three red, two yellow and one green face, is thrown to select the box. If red face turns up, we pick up the box I, if a yellow face turns up we pick up box II, otherwise, we pick up box III. Then, we draw a ball from the selected box. If the ball is drawn is white, what is the probability that the dice had turned up with a red face?


A box has 20 pens of which 2 are defective. Calculate the probability that out of 5 pens drawn one by one with replacement, at most 2 are defective.


Bag A contains 4 white balls and 3 black balls. While Bag B contains 3 white balls and 5 black balls. Two balls are drawn from Bag A and placed in Bag B. Then, what is the probability of drawing a white ball from Bag B?


In an examination, 30% of students have failed in subject I, 20% of the students have failed in subject II and 10% have failed in both subject I and subject II. A student is selected at random, what is the probability that the student has failed in exactly one subject?


A bag contains 10 white balls and 15 black balls. Two balls are drawn in succession without replacement. What is the probability that, first is white and second is black?


From a pack of well-shuffled cards, two cards are drawn at random. Find the probability that both the cards are diamonds when first card drawn is kept aside


Two cards are drawn one after the other from a pack of 52 cards without replacement. What is the probability that both the cards drawn are face cards?


If P(A) = 0.5, P(B) = 0.8 and P(B/A) = 0.8, find P(A/B) and P(A ∪ B)


A problem in Mathematics is given to three students whose chances of solving it are `1/3, 1/4` and `1/5`. What is the probability that exactly one of them will solve it?


The probability that a car being filled with petrol will also need an oil change is 0.30; the probability that it needs a new oil filter is 0.40; and the probability that both the oil and filter need changing is 0.15. If a new oil filter is needed, what is the probability that the oil has to be changed?


One bag contains 5 white and 3 black balls. Another bag contains 4 white and 6 black balls. If one ball is drawn from each bag, find the probability that both are white


Given P(A) = 0.4 and P(A ∪ B) = 0.7 Find P(B) if A and B are mutually exclusive


Given P(A) = 0.4 and P(A ∪ B) = 0.7 Find P(B) if P(A/B) = 0.4


If P(A) = `2/5`, P(B) = `3/10` and P(A ∩ B) = `1/5`, then P(A|B).P(B'|A') is equal to ______.


If two balls are drawn from a bag containing 3 white, 4 black and 5 red balls. Then, the probability that the drawn balls are of different colours is:


If P(A) = `1/2`, P(B) = 0, then `P(A/B)` is


A pack of cards has one card missing. Two cards are drawn randomly and are found to be spades. The probability that the missing card is not a spade, is ______.


If A and B are two events such that P(A) = `1/3`, P(B) = `1/5` and P(A ∪ B) = `1/2`, then P(A|B') + P(B|A') is equal to ______.


If A and B are two events such that `P(A/B) = 2 xx P(B/A)` and P(A) + P(B) = `2/3`, then P(B) is equal to ______.


Read the following passage:

Recent studies suggest the roughly 12% of the world population is left-handed.

Depending upon the parents, the chances of having a left-handed child are as follows:

A :  When both father and mother are left-handed:
Chances of left-handed child is 24%.
B :  When father is right-handed and mother is left-handed:
Chances of left-handed child is 22%.
C :  When father is left-handed and mother is right-handed:
Chances of left-handed child is 17%.
D :  When both father and mother are right-handed:
Chances of left-handed child is 9%.

Assuming that P(A) = P(B) = P(C) = P(D) = `1/4` and L denotes the event that child is left-handed.

Based on the above information, answer the following questions:

  1. Find `P(L/C)` (1)
  2. Find `P(overlineL/A)` (1)
  3. (a) Find `P(A/L)` (2)
    OR
    (b) Find the probability that a randomly selected child is left-handed given that exactly one of the parents is left-handed. (2)

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×