मराठी

A Box Has 20 Pens of Which 2 Are Defective. Calculate the Probability that Out of 5 Pens Drawn One by One with Replacement, at Most 2 Are Defective. - Mathematics

Advertisements
Advertisements

प्रश्न

A box has 20 pens of which 2 are defective. Calculate the probability that out of 5 pens drawn one by one with replacement, at most 2 are defective.

उत्तर

Let p denote the probability of drawing a defective pen. Then,

\[p = \frac{2}{20} = \frac{1}{10}\]

\[ \Rightarrow q = 1 - p = 1 - \frac{1}{10} = \frac{9}{10}\]

Let X denote the number of defective pens drawn. Then, X is a binomial variate with parameter n = 5 and \[p = \frac{1}{10}\] .

Now, P(X = r) = Probability of drawing r defective pens = \[^{5}{C}_r \left( \frac{1}{10} \right)^r \left( \frac{9}{10} \right)^{5 - r} , r = 0, 1, 2, 3, 4, 5\]

∴ Probability of drawing at most 2 defective pens
= P(X  ≤ 2)
= P(X = 0) + P(X = 1) + P(X = 2)

\[= ^{5}{}{C}_0 \left( \frac{1}{10} \right)^0 \left( \frac{9}{10} \right)^5 + ^{5}{C}_1 \left( \frac{1}{10} \right)^1 \left( \frac{9}{10} \right)^4 + ^{5}{C}_2 \left( \frac{1}{10} \right)^2 \left( \frac{9}{10} \right)^3 \]

\[ = \left( \frac{9}{10} \right)^3 \left( \frac{81}{100} + 5 \times \frac{9}{100} + \frac{10}{100} \right)\]

\[ = \frac{729}{1000} \times \frac{136}{100}\]

\[ = 0 . 99144\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2015-2016 (March) Foreign Set 2

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

An insurance agent insures lives of 5 men, all of the same age and in good health. The probability that a man of this age will survive the next 30 years is known to be 2/3 . Find the probability that in the next 30 years at most 3 men will survive.


In a game, a man wins Rs 5 for getting a number greater than 4 and loses Rs 1 otherwise, when a fair die is thrown. The man decided to thrown a die thrice but to quit as and when he gets a number greater than 4. Find the expected value of the amount he wins/loses


40% students of a college reside in hostel and the remaining reside outside. At the end of the year, 50% of the hostelers got A grade while from outside students, only 30% got A grade in the examination. At the end of the year, a student of the college was chosen at random and was found to have gotten A grade. What is the probability that the selected student was a hosteler ?


If P(A) = 0.8, P(B) = 0.5 and P(B|A) = 0.4, find P(A|B)


If P(A) = 0.8, P(B) = 0.5 and P(B|A) = 0.4, find  P(A ∪ B)


Determine P(E|F).

Two coins are tossed once, where 

E: no tail appears, F: no head appears


Determine P(E|F).

Mother, father and son line up at random for a family picture

E: son on one end, F: father in middle


A black and a red dice are rolled. 

Find the conditional probability of obtaining a sum greater than 9, given that the black die resulted in a 5.


A fair die is rolled. Consider events E = {1, 3, 5}, F = {2, 3} and G = {2, 3, 4, 5} Find P (E|F) and P (F|E)


A fair die is rolled. Consider events E = {1, 3, 5}, F = {2, 3} and G = {2, 3, 4, 5} Find P ((E ∪ F)|G) and P ((E ∩ G)|G)


A die is tossed thrice. Find the probability of getting an odd number at least once.


In a game, a man wins a rupee for a six and loses a rupee for any other number when a fair die is thrown. The man decided to throw a die thrice but to quit as and when he gets a six. Find the expected value of the amount he wins/loses.


Five dice are thrown simultaneously. If the occurrence of an odd number in a single dice is considered a success, find the probability of maximum three successes.


Two dice are thrown simultaneously, If at least one of the dice show a number 5, what is the probability that sum of the numbers on two dice is 9?


In an examination, 30% of students have failed in subject I, 20% of the students have failed in subject II and 10% have failed in both subject I and subject II. A student is selected at random, what is the probability that the student has failed in exactly one subject?


A bag contains 10 white balls and 15 black balls. Two balls are drawn in succession without replacement. What is the probability that, one is white and other is black?


Two balls are drawn from an urn containing 5 green, 3 blue, and 7 yellow balls one by one without replacement. What is the probability that at least one ball is blue?


Select the correct option from the given alternatives :

Bag I contains 3 red and 4 black balls while another Bag II contains 5 red and 6 black balls. One ball is drawn at random from one of the bags and it is found to be red. The probability that it was drawn from Bag II


If A and B are two events such that P(A ∪ B) = 0.7, P(A ∩ B) = 0.2, and P(B) = 0.5, then show that A and B are independent


One bag contains 5 white and 3 black balls. Another bag contains 4 white and 6 black balls. If one ball is drawn from each bag, find the probability that both are white


A year is selected at random. What is the probability that it is a leap year which contains 53 Sundays


The total number of ways in which 5 balls of different colours can be distributed among 3 persons so that each person gets at least one ball is ______ 


If P(A) = `2/5`, P(B) = `3/10` and P(A ∩ B) = `1/5`, then P(A|B).P(B'|A') is equal to ______.


If two balls are drawn from a bag containing 3 white, 4 black and 5 red balls. Then, the probability that the drawn balls are of different colours is:


A bag contains 3 red and 4 white balls and another bag contains 2 red and 3 white balls. If one ball is drawn from the first bag and 2 balls are drawn from the second bag, then find the probability that all three balls are of the same colour.


If A and B are two events such that P(A) = `1/3`, P(B) = `1/5` and P(A ∪ B) = `1/2`, then P(A|B') + P(B|A') is equal to ______.


It is given that the events A and B are such that P(A) = `1/4, P(A/B) = 1/2` and `P(B/A) = 2/3`, then P(B) is equal to ______. 


Read the following passage:

Recent studies suggest the roughly 12% of the world population is left-handed.

Depending upon the parents, the chances of having a left-handed child are as follows:

A :  When both father and mother are left-handed:
Chances of left-handed child is 24%.
B :  When father is right-handed and mother is left-handed:
Chances of left-handed child is 22%.
C :  When father is left-handed and mother is right-handed:
Chances of left-handed child is 17%.
D :  When both father and mother are right-handed:
Chances of left-handed child is 9%.

Assuming that P(A) = P(B) = P(C) = P(D) = `1/4` and L denotes the event that child is left-handed.

Based on the above information, answer the following questions:

  1. Find `P(L/C)` (1)
  2. Find `P(overlineL/A)` (1)
  3. (a) Find `P(A/L)` (2)
    OR
    (b) Find the probability that a randomly selected child is left-handed given that exactly one of the parents is left-handed. (2)

A Problem in Mathematics is given to the three students A, B and C. Their chances of solving the problem are `1/2, 1/3` and `1/4` respectively. Find the probability that at least two of them will solve the problem.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×