मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

Two cards are drawn one after the other from a pack of 52 cards without replacement. What is the probability that both the cards drawn are face cards? - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Two cards are drawn one after the other from a pack of 52 cards without replacement. What is the probability that both the cards drawn are face cards?

बेरीज

उत्तर

Let A ≡ the event that first card is a face card

B ≡ the event that second card is a face card

Since there are 12 face cards in the pack of 52 cards,

P(A) = `12/52 = 3/13`

`"P"("B"//"A")` = Probability that second card is a face card under the condition that first face card is not replaced. When the second card is drawn, the pack has 51 cards including 11 face cards.

∴ `"P"("B"//"A") = 11/51`

∴ the required probability = P(A ∩ B)

= `"P"("A")*"P"("B"//"A")`

= `3/13 xx 11/51`

= `11/221`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Probability - Exercise 9.3 [पृष्ठ २०६]

APPEARS IN

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

In a game, a man wins Rs 5 for getting a number greater than 4 and loses Rs 1 otherwise, when a fair die is thrown. The man decided to thrown a die thrice but to quit as and when he gets a number greater than 4. Find the expected value of the amount he wins/loses


A bag X contains 4 white balls and 2 black balls, while another bag Y contains 3 white balls and 3 black balls. Two balls are drawn (without replacement) at random from one of the bags and were found to be one white and one black. Find the probability that the balls were drawn from bag Y.


If P(A) = 0.8, P(B) = 0.5 and P(B|A) = 0.4, find

  1. P(A ∩ B)
  2. P(A|B)
  3. P(A ∪ B)

Evaluate P(A ∪ B), if 2P(A) = P(B) = `5/13` and P(A | B) = `2/5`


Determine P(E|F).

A die is thrown three times,

E: 4 appears on the third toss, F: 6 and 5 appears respectively on first two tosses


A fair die is rolled. Consider events E = {1, 3, 5}, F = {2, 3} and G = {2, 3, 4, 5} Find P (E|G) and P (G|E)


Given that the two numbers appearing on throwing the two dice are different. Find the probability of the event ‘the sum of numbers on the dice is 4’.


If P(A) = `1/2`,  P(B) = 0, then P(A|B) is ______.


A and B are two events such that P (A) ≠ 0. Find P (B|A), if  A is a subset of B.


Suppose we have four boxes. A, B, C and D containing coloured marbles as given below:

Box Marble colour
  Red White Black
A 1 6 3
B 6 2 2
C 8 1 1
D 0 6 4

One of the boxes has been selected at random and a single marble is drawn from it. If the marble is red, what is the probability that it was drawn from box A?, box B?, box C?


Five dice are thrown simultaneously. If the occurrence of an odd number in a single dice is considered a success, find the probability of maximum three successes.


A box has 20 pens of which 2 are defective. Calculate the probability that out of 5 pens drawn one by one with replacement, at most 2 are defective.


Three cards are drawn at random (without replacement) from a well-shuffled pack of 52 playing cards. Find the probability distribution of the number of red cards. Hence, find the mean of the distribution.


 Two balls are drawn from an urn containing 3 white, 5 red and 2 black balls, one by one without replacement. What is the probability that at least one ball is red?


In a college, 70% of students pass in Physics, 75% pass in Mathematics and 10% of students fail in both. One student is chosen at random. What is the probability that:
(i) He passes in Physics and Mathematics?
(ii) He passes in Mathematics given that he passes in Physics.
(iii) He passes in Physics given that he passes in Mathematics.


Two dice are thrown simultaneously, If at least one of the dice show a number 5, what is the probability that sum of the numbers on two dice is 9?


Two balls are drawn from an urn containing 5 green, 3 blue, and 7 yellow balls one by one without replacement. What is the probability that at least one ball is blue?


From a pack of well-shuffled cards, two cards are drawn at random. Find the probability that both the cards are diamonds when first card drawn is kept aside


From a pack of well-shuffled cards, two cards are drawn at random. Find the probability that both the cards are diamonds when the first card drawn is replaced in the pack


A problem in Mathematics is given to three students whose chances of solving it are `1/3, 1/4` and `1/5`. What is the probability that the problem is solved?


Given P(A) = 0.4 and P(A ∪ B) = 0.7 Find P(B) if A and B are independent events


Given P(A) = 0.4 and P(A ∪ B) = 0.7 Find P(B) if P(B/A) = 0.5


A year is selected at random. What is the probability that it contains 53 Sundays


Suppose the chances of hitting a target by a person X is 3 times in 4 shots, by Y is 4 times in 5 shots, and by Z is 2 times in 3 shots. They fire simultaneously exactly one time. What is the probability that the target is damaged by exactly 2 hits?


In a multiple-choice question, there are three options out of which only one is correct. A person is guessing the answer at random. If there are 7 such questions, then the probability that he will get exactly 4 correct answers is ______ 


If P(A) = 0.4, P(B) = 0.8 and P(B|A) = 0.6, then P(A ∪ B) is equal to ______.


A bag contains 6 red and 5 blue balls and another bag contains 5 red and 8 blue balls. A ball is drawn from the first bag and without noticing its colour is placed in the second bag. If a ball is drawn from the second bag, then find the probability that the drawn ball is red in colour.


Bag I contains 3 red, 4 black and 3 white balls and Bag II contains 2 red, 5 black and 2 white balls. One ball is transferred from Bag I to Bag II and then a ball is draw from Bag II. The ball so drawn is found to be black in colour. Then the probability, that the transferred ball is red, is ______.


It is given that the events A and B are such that P(A) = `1/4, P(A/B) = 1/2` and `P(B/A) = 2/3`, then P(B) is equal to ______. 


If for two events A and B, P(A – B) = `1/5` and P(A) = `3/5`, then `P(B/A)` is equal to ______.


Read the following passage:

Recent studies suggest the roughly 12% of the world population is left-handed.

Depending upon the parents, the chances of having a left-handed child are as follows:

A :  When both father and mother are left-handed:
Chances of left-handed child is 24%.
B :  When father is right-handed and mother is left-handed:
Chances of left-handed child is 22%.
C :  When father is left-handed and mother is right-handed:
Chances of left-handed child is 17%.
D :  When both father and mother are right-handed:
Chances of left-handed child is 9%.

Assuming that P(A) = P(B) = P(C) = P(D) = `1/4` and L denotes the event that child is left-handed.

Based on the above information, answer the following questions:

  1. Find `P(L/C)` (1)
  2. Find `P(overlineL/A)` (1)
  3. (a) Find `P(A/L)` (2)
    OR
    (b) Find the probability that a randomly selected child is left-handed given that exactly one of the parents is left-handed. (2)

A Problem in Mathematics is given to the three students A, B and C. Their chances of solving the problem are `1/2, 1/3` and `1/4` respectively. Find the probability that exactly two students will solve the problem.


Three friends go to a restaurant to have pizza. They decide who will pay for the pizza by tossing a coin. It is decided that each one of them will toss a coin and if one person gets a different result (heads or tails) than the other two, that person would pay. If all three get the same result (all heads or all tails), they will toss again until they get a different result.

  1. What is the probability that all three friends will get the same result (all heads or all tails) in one round of tossing?
  2. What is the probability that they will get a different result in one round of tossing?
  3. What is the probability that they will need exactly four rounds of tossing to determine who would pay?

Compute P(A|B), if P(B) = 0.5 and P (A ∩ B) = 0.32.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×