मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

Bag A contains 3 red and 2 white balls and bag B contains 2 red and 5 white balls. A bag is selected at random, a ball is drawn and put into the other bag, and then a ball is drawn from that bag. Fin - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Bag A contains 3 red and 2 white balls and bag B contains 2 red and 5 white balls. A bag is selected at random, a ball is drawn and put into the other bag, and then a ball is drawn from that bag. Find the probability that both the balls drawn are of same color

बेरीज

उत्तर

Let event C1: First ball drawn is red and from bag A,

event D1: First ball drawn is white and from bag A,

event E1: First ball drawn is red and from bag B,

event F1: First ball drawn is white and from bag B,

event C2: Second ball drawn is red and from bag B,

event D2: Second ball drawn is white and from bag B,

event E2: Second ball drawn is red and from bag A,

event F2: Second ball drawn is white and from bag A,

event G: Selecting bag A in first place,

event H: Selecting bag B in first place.

P(G) = P(H) = `1/2`

Let event X: Both the balls drawn are of same color.

∴ P(X) = `"P"("G") xx "P"("X"//"G") + "P"("H") xx "P"("X"//"H")`   …(i)

If bag A is selected in first place, then In bag A, we have 5 balls, out of which 3 are red.

∴ Probability of getting first red ball from bag A = P(C1)

= `(""^3"C"_1)/(""^5"C"_1) = 3/5`

Since first red ball is put into the bag B, we now have 8 balls in bag B, out of which 3 are red.

∴ Probability of getting second red ball from bag B.

`"P"("C"_2//"C"_1) = (""^3"C"_1)/(""^8"C"_1) = 3/8`

Similarly, probability of getting first white ball from bag A = P(D1) = `(""^2"C"_1)/(""^5"C"_1) = 2/5` and probability of getting second white ball form bag B = `"P"("D"_2//"D"_1) = (""^6"C"_1)/(""^8"C"_1) = 6/8`

∴ `"P"("X"//"G") = "P"("C"_1) * "P"("C"_2//"C"_1) + "P"("D"_1) * "P"("D"_2//"D"_1)`

= `3/5 xx 3/8 + 2/5 xx 6/8`

= `21/40`  ...(ii)

Similarly, `"P"("X"//"H")`

= `"P"("E"_1) * "P"("E"_2//"E"_1) + "P"("F"_1) * "P"("F"_2//"F"_1)`

= `2/7 xx 4/6 + 5/7 xx 3/6`

= `23/42`            ...(iii)

From (i), (ii), (iii),

Required probability = `1/2 xx 21/40 + 1/2 xx 23/42`

= `3604/6720`

= `901/1680`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Probability - Exercise 9.3 [पृष्ठ २०६]

APPEARS IN

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

A die, whose faces are marked 1, 2, 3 in red and 4, 5, 6 in green is tossed. Let A be the event "number obtained is even" and B be the event "number obtained is red". Find if A and B are independent events.


If `P(A)  = 3/5 and P(B) = 1/5` , find P (A ∩ B) if A and B are independent events.


Let A and B be independent events with P (A) = 0.3 and P (B) = 0.4. Find 

  1. P (A ∩ B)
  2. P (A ∪ B)
  3. P (A | B)
  4. P (B | A)

Events A and B are such that `P(A) = 1/2, P(B) = 7/12 and P("not A or not B") = 1/4` . State whether A and B are independent?


Probability of solving specific problem independently by A and B are `1/2` and `1/3` respectively. If both try to solve the problem independently, find the probability that

  1. the problem is solved
  2. exactly one of them solves the problem.

Prove that if E and F are independent events, then the events E and F' are also independent. 


A problem in statistics is given to three students A, B, and C. Their chances of solving the problem are `1/3`, `1/4`, and `1/5` respectively. If all of them try independently, what is the probability that, problem is solved?


The probability that a 50-year old man will be alive till age 60 is 0.83 and the probability that a 45-year old woman will be alive till age 55 is 0.97. What is the probability that a man whose age is 50 and his wife whose age is 45 will both be alive after 10 years?


The odds against student X solving a business statistics problem are 8: 6 and odds in favour of student Y solving the same problem are 14: 16 What is the chance that the problem will be solved, if they try independently?


A, B, and C try to hit a target simultaneously but independently. Their respective probabilities of hitting the target are `3/4, 1/2` and `5/8`. Find the probability that the target

  1. is hit exactly by one of them
  2. is not hit by any one of them
  3. is hit
  4. is exactly hit by two of them

Two hundred patients who had either Eye surgery or Throat surgery were asked whether they were satisfied or unsatisfied regarding the result of their surgery

The follwoing table summarizes their response:

Surgery Satisfied Unsatisfied Total
Throat 70 25 95
Eye 90 15 105
Total 160 40 200

If one person from the 200 patients is selected at random, determine the probability that person was unsatisfied given that the person had eye surgery


Two hundred patients who had either Eye surgery or Throat surgery were asked whether they were satisfied or unsatisfied regarding the result of their surgery.

The following table summarizes their response:

Surgery Satisfied Unsatisfied Total
Throat 70 25 95
Eye 90 15 105
Total 160 40 200

If one person from the 200 patients is selected at random, determine the probability the person had Throat surgery given that the person was unsatisfied.


A bag contains 3 red and 5 white balls. Two balls are drawn at random one after the other without replacement. Find the probability that both the balls are white.

Solution: Let,

A : First ball drawn is white

B : second ball drawn in white.

P(A) = `square/square`

After drawing the first ball, without replacing it into the bag a second ball is drawn from the remaining `square` balls.

∴ P(B/A) = `square/square`

∴ P(Both balls are white) = P(A ∩ B)

`= "P"(square) * "P"(square)`

`= square * square`

= `square`


Solve the following:

If P(A) = `"P"("A"/"B") = 1/5, "P"("B"/"A") = 1/3` the find `"P"("B'"/"A'")`


Solve the following:

Let A and B be independent events with P(A) = `1/4`, and P(A ∪ B) = 2P(B) – P(A). Find `"P"("A"/"B")`


For a loaded die, the probabilities of outcomes are given as under:
P(1) = P(2) = 0.2, P(3) = P(5) = P(6) = 0.1 and P(4) = 0.3. The die is thrown two times. Let A and B be the events, ‘same number each time’, and ‘a total score is 10 or more’, respectively. Determine whether or not A and B are independent.


A and B are two events such that P(A) = `1/2`, P(B) = `1/3` and P(A ∩ B) = `1/4`. Find: `"P"("B"/"A")`


Three events A, B and C have probabilities `2/5, 1/3` and `1/2`, , respectively. Given that P(A ∩ C) = `1/5` and P(B ∩ C) = `1/4`, find the values of P(C|B) and P(A' ∩ C').


Two dice are tossed. Find whether the following two events A and B are independent: A = {(x, y): x + y = 11} B = {(x, y): x ≠ 5} where (x, y) denotes a typical sample point.


A and B are events such that P(A) = 0.4, P(B) = 0.3 and P(A ∪ B) = 0.5. Then P(B′ ∩ A) equals ______.


If A and B are two independent events with P(A) = `3/5` and P(B) = `4/9`, then P(A′ ∩ B′) equals ______.


Let A and B be two events such that P(A) = `3/8`, P(B) = `5/8` and P(A ∪ B) = `3/4`. Then P(A|B).P(A′|B) is equal to ______.


If A and B are two independent events then P(A and B) = P(A).P(B).


If A and B′ are independent events, then P(A' ∪ B) = 1 – P (A) P(B')


If A and B are independent, then P(exactly one of A, B occurs) = P(A)P(B') + P(B)P(A') 


If A, B and C are three independent events such that P(A) = P(B) = P(C) = p, then P(At least two of A, B, C occur) = 3p2 – 2p3 


Let E1 and E2 be two independent events. Let P(E) denotes the probability of the occurrence of the event E. Further, let E'1 and E'2 denote the complements of E1 and E2, respectively. If P(E'1 ∩ E2) = `2/15` and P(E1 ∩ E'2) = `1/6`, then P(E1) is


The probability of obtaining an even prime number on each die when a pair of dice is rolled is


Two cards are drawn at random and without replacement from a pack of 52 playing cards. Find the probability that both the cards are black.


Let A and B be independent events P(A) = 0.3 and P(B) = 0.4. Find P(A ∩ B)


The probability that A hits the target is `1/3` and the probability that B hits it, is `2/5`. If both try to hit the target independently, find the probability that the target is hit.


Let Bi(i = 1, 2, 3) be three independent events in a sample space. The probability that only B1 occur is α, only B2 occurs is β and only B3 occurs is γ. Let p be the probability that none of the events Bi occurs and these 4 probabilities satisfy the equations (α – 2β)p = αβ and (β – 3γ) = 2βy (All the probabilities are assumed to lie in the interval (0, 1)). Then `("P"("B"_1))/("P"("B"_3))` is equal to ______.


A problem in Mathematics is given to three students whose chances of solving it are `1/2, 1/3, 1/4` respectively. If the events of their solving the problem are independent then the probability that the problem will be solved, is ______.


Given two events A and B such that (A/B) = 0.25 and P(A ∩ B) = 0.12. The value P(A ∩ B') is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×