Advertisements
Advertisements
प्रश्न
A problem in Mathematics is given to three students whose chances of solving it are `1/2, 1/3, 1/4` respectively. If the events of their solving the problem are independent then the probability that the problem will be solved, is ______.
पर्याय
`1/4`
`1/3`
`1/2`
`3/4`
उत्तर १
A problem in Mathematics is given to three students whose chances of solving it are `1/2, 1/3, 1/4` respectively. If the events of their solving the problem are independent then the probability that the problem will be solved, is `underlinebb(3/4)`.
Explanation:
Let A, B, C be the respective events of solving the problem.
Then, P(A) = `1/2`, P(B) = `1/3` and P(C) = `1/4`.
Here, A, B, C are independent events.
Problem is solved if at least one of them solves the problem.
Required probability is
= P(A ∪ B ∪ C)
= `1 - P(overlineA)P(overlineB)P(overlineC)`
= `1 - (1 - 1/2)(1 - 1/3)(1 - 1/4)`
= `1 - 1/4`
= `3/4`.
उत्तर २
A problem in Mathematics is given to three students whose chances of solving it are `1/2, 1/3, 1/4` respectively. If the events of their solving the problem are independent then the probability that the problem will be solved, is `underlinebb(3/4)`.
Explanation:
The problem will be solved if one or more of them can solve the problem.
The probability is
`P(Aoverline(BC)) + P(overlineABoverlineC) + P(overline(AB)C) + P(ABoverlineC) + P(AoverlineBC) + P(overlineABC) + P(ABC)`
= `1/2. 2/3. 3/4 + 1/2. 1/3. 3/4 + 1/2 . 2/3. 1/4 + 1/2. 1/3. 3/4 + 1/2. 2/3. 1/4 + 1/2. 1/3. 1/4 + 1/2. 1/3. 1/4`
= `3/4`.
उत्तर ३
A problem in Mathematics is given to three students whose chances of solving it are `1/2, 1/3, 1/4` respectively. If the events of their solving the problem are independent then the probability that the problem will be solved, is `underlinebb(3/4)`.
Explanation:
Let us think quantitively.
Let us assume that there are 100 questions given to A.
A solves `1/2 xx 100` = 50 questions then remaining 50 questions is given to B and B solves `50 xx 1/3` = 16.67 questions.
Remaining `50 xx 2/3` questions is given to C and C solves `50 xx 2/3 xx 1/4` = 8.33 questions.
Therefore, number of questions solved is 50 + 16.67 + 8.33 = 75.
So, required probability is `75/100 = 3/4`.
APPEARS IN
संबंधित प्रश्न
If `P(A) = 3/5 and P(B) = 1/5` , find P (A ∩ B) if A and B are independent events.
Probability of solving specific problem independently by A and B are `1/2` and `1/3` respectively. If both try to solve the problem independently, find the probability that
- the problem is solved
- exactly one of them solves the problem.
One card is drawn at random from a well-shuffled deck of 52 cards. In which of the following case is the events E and F independent?
E : ‘the card drawn is a king or queen’
F : ‘the card drawn is a queen or jack’
In a race, the probabilities of A and B winning the race are `1/3` and `1/6` respectively. Find the probability of neither of them winning the race.
A speaks the truth in 60% of the cases, while B is 40% of the cases. In what percent of cases are they likely to contradict each other in stating the same fact?
The probabilities of solving a specific problem independently by A and B are `1/3` and `1/5` respectively. If both try to solve the problem independently, find the probability that the problem is solved.
A problem in statistics is given to three students A, B, and C. Their chances of solving the problem are `1/3`, `1/4`, and `1/5` respectively. If all of them try independently, what is the probability that, problem is not solved
A problem in statistics is given to three students A, B, and C. Their chances of solving the problem are `1/3`, `1/4`, and `1/5` respectively. If all of them try independently, what is the probability that, exactly two students solve the problem?
Two hundred patients who had either Eye surgery or Throat surgery were asked whether they were satisfied or unsatisfied regarding the result of their surgery
The follwoing table summarizes their response:
Surgery | Satisfied | Unsatisfied | Total |
Throat | 70 | 25 | 95 |
Eye | 90 | 15 | 105 |
Total | 160 | 40 | 200 |
If one person from the 200 patients is selected at random, determine the probability that the person was satisfied given that the person had Throat surgery.
Two hundred patients who had either Eye surgery or Throat surgery were asked whether they were satisfied or unsatisfied regarding the result of their surgery
The follwoing table summarizes their response:
Surgery | Satisfied | Unsatisfied | Total |
Throat | 70 | 25 | 95 |
Eye | 90 | 15 | 105 |
Total | 160 | 40 | 200 |
If one person from the 200 patients is selected at random, determine the probability that person was unsatisfied given that the person had eye surgery
Bag A contains 3 red and 2 white balls and bag B contains 2 red and 5 white balls. A bag is selected at random, a ball is drawn and put into the other bag, and then a ball is drawn from that bag. Find the probability that both the balls drawn are of same color
A bag contains 3 red and 5 white balls. Two balls are drawn at random one after the other without replacement. Find the probability that both the balls are white.
Solution: Let,
A : First ball drawn is white
B : second ball drawn in white.
P(A) = `square/square`
After drawing the first ball, without replacing it into the bag a second ball is drawn from the remaining `square` balls.
∴ P(B/A) = `square/square`
∴ P(Both balls are white) = P(A ∩ B)
`= "P"(square) * "P"(square)`
`= square * square`
= `square`
Solve the following:
Let A and B be independent events with P(A) = `1/4`, and P(A ∪ B) = 2P(B) – P(A). Find `"P"("A"/"B")`
Solve the following:
For three events A, B and C, we know that A and C are independent, B and C are independent, A and B are disjoint, P(A ∪ C) = `2/3`, P(B ∪ C) = `3/4`, P(A ∪ B ∪ C) = `11/12`. Find P(A), P(B) and P(C)
Solve the following:
Consider independent trails consisting of rolling a pair of fair dice, over and over What is the probability that a sum of 5 appears before sum of 7?
Solve the following:
A machine produces parts that are either good (90%), slightly defective (2%), or obviously defective (8%). Produced parts get passed through an automatic inspection machine, which is able to detect any part that is obviously defective and discard it. What is the quality of the parts that make it throught the inspection machine and get shipped?
If A and B′ are independent events then P(A′ ∪ B) = 1 – ______.
Three events A, B and C are said to be independent if P(A ∩ B ∩ C) = P(A) P(B) P(C).
For a loaded die, the probabilities of outcomes are given as under:
P(1) = P(2) = 0.2, P(3) = P(5) = P(6) = 0.1 and P(4) = 0.3. The die is thrown two times. Let A and B be the events, ‘same number each time’, and ‘a total score is 10 or more’, respectively. Determine whether or not A and B are independent.
If A and B are two independent events with P(A) = `3/5` and P(B) = `4/9`, then P(A′ ∩ B′) equals ______.
If two events are independent, then ______.
One card is drawn at random from a well-shuffled deck of 52 cards. In which of the following case is the events E and F independent?
E : ‘the card drawn is black’
F : ‘the card drawn is a king’
The probability of obtaining an even prime number on each die when a pair of dice is rolled is
If P(A) = `3/5` and P(B) = `1/5`, find P(A ∩ B), If A and B are independent events.
Two cards are drawn at random and without replacement from a pack of 52 playing cards. Find the probability that both the cards are black.
Let EC denote the complement of an event E. Let E1, E2 and E3 be any pairwise independent events with P(E1) > 0 and P(E1 ∩ E2 ∩ E3) = 0. Then `"P"(("E"_2^"C" ∩ "E"_3^"C")/"E"_1)` is equal to ______.
Given two independent events, if the probability that exactly one of them occurs is `26/49` and the probability that none of them occurs is `15/49`, then the probability of more probable of the two events is ______.
Five fair coins are tossed simultaneously. The probability of the events that at least one head comes up is ______.
Given two events A and B such that (A/B) = 0.25 and P(A ∩ B) = 0.12. The value P(A ∩ B') is ______.