Advertisements
Advertisements
प्रश्न
One card is drawn at random from a well-shuffled deck of 52 cards. In which of the following case is the events E and F independent?
E : ‘the card drawn is black’
F : ‘the card drawn is a king’
उत्तर
In a deck of 52 cards, 26 cards are black and 4 cards are kings.
∴ P(E) = P(the card drawn is black) = `26/52 = 1/2`
∴ P(F) = P(the card drawn is a king) = `4/52 = 1/13`
In the pack of 52 cards, 2 cards are black as well as kings.
∴ P (EF) = P(the card drawn is a black king) = `2/52 = 1/26`
⇒ P(E) × P(F) = P(EF)
⇒ `1/2 * 1/13 = 1/26`
Therefore, the given events E and F are independent.
APPEARS IN
संबंधित प्रश्न
A card from a pack of 52 playing cards is lost. From the remaining cards of the pack three cards are drawn at random (without replacement) and are found to be all spades. Find the probability of the lost card being a spade.
If `P(A) = 3/5 and P(B) = 1/5` , find P (A ∩ B) if A and B are independent events.
Let E and F be events with `P(E) = 3/5, P(F) = 3/10 and P(E ∩ F) = 1/5`. Are E and F independent?
Let A and B be independent events with P (A) = 0.3 and P (B) = 0.4. Find
- P (A ∩ B)
- P (A ∪ B)
- P (A | B)
- P (B | A)
One card is drawn at random from a well-shuffled deck of 52 cards. In which of the following case is the events E and F independent?
E : ‘the card drawn is a king or queen’
F : ‘the card drawn is a queen or jack’
Two events, A and B, will be independent if ______.
If each element of a second order determinant is either zero or one, what is the probability that the value of the determinant is positive? (Assume that the individual entries of the determinant are chosen independently, each value being assumed with probability `1/2`).
In a race, the probabilities of A and B winning the race are `1/3` and `1/6` respectively. Find the probability of neither of them winning the race.
A fair die is rolled. If face 1 turns up, a ball is drawn from Bag A. If face 2 or 3 turns up, a ball is drawn from Bag B. If face 4 or 5 or 6 turns up, a ball is drawn from Bag C. Bag A contains 3 red and 2 white balls, Bag B contains 3 red and 4 white balls and Bag C contains 4 red and 5 white balls. The die is rolled, a Bag is picked up and a ball is drawn. If the drawn ball is red; what is the probability that it is drawn from Bag B?
A problem in statistics is given to three students A, B, and C. Their chances of solving the problem are `1/3`, `1/4`, and `1/5` respectively. If all of them try independently, what is the probability that, problem is solved?
A, B, and C try to hit a target simultaneously but independently. Their respective probabilities of hitting the target are `3/4, 1/2` and `5/8`. Find the probability that the target
- is hit exactly by one of them
- is not hit by any one of them
- is hit
- is exactly hit by two of them
Two hundred patients who had either Eye surgery or Throat surgery were asked whether they were satisfied or unsatisfied regarding the result of their surgery
The follwoing table summarizes their response:
Surgery | Satisfied | Unsatisfied | Total |
Throat | 70 | 25 | 95 |
Eye | 90 | 15 | 105 |
Total | 160 | 40 | 200 |
If one person from the 200 patients is selected at random, determine the probability that the person was satisfied given that the person had Throat surgery.
The probability that a man who is 45 years old will be alive till he becomes 70 is `5/12`. The probability that his wife who is 40 years old will be alive till she becomes 65 is `3/8`. What is the probability that, 25 years hence,
- the couple will be alive
- exactly one of them will be alive
- none of them will be alive
- at least one of them will be alive
Bag A contains 3 red and 2 white balls and bag B contains 2 red and 5 white balls. A bag is selected at random, a ball is drawn and put into the other bag, and then a ball is drawn from that bag. Find the probability that both the balls drawn are of same color
A bag contains 3 red and 5 white balls. Two balls are drawn at random one after the other without replacement. Find the probability that both the balls are white.
Solution: Let,
A : First ball drawn is white
B : second ball drawn in white.
P(A) = `square/square`
After drawing the first ball, without replacing it into the bag a second ball is drawn from the remaining `square` balls.
∴ P(B/A) = `square/square`
∴ P(Both balls are white) = P(A ∩ B)
`= "P"(square) * "P"(square)`
`= square * square`
= `square`
Solve the following:
If P(A) = `"P"("A"/"B") = 1/5, "P"("B"/"A") = 1/3` the find `"P"("A'"/"B")`
Solve the following:
Let A and B be independent events with P(A) = `1/4`, and P(A ∪ B) = 2P(B) – P(A). Find `"P"("A"/"B")`
Solve the following:
Consider independent trails consisting of rolling a pair of fair dice, over and over What is the probability that a sum of 5 appears before sum of 7?
The probability of simultaneous occurrence of at least one of two events A and B is p. If the probability that exactly one of A, B occurs is q, then prove that P(A′) + P(B′) = 2 – 2p + q.
Two dice are thrown together. Let A be the event ‘getting 6 on the first die’ and B be the event ‘getting 2 on the second die’. Are the events A and B independent?
Let A and B be two independent events. Then P(A ∩ B) = P(A) + P(B)
Refer to Question 1 above. If the die were fair, determine whether or not the events A and B are independent.
A and B are two events such that P(A) = `1/2`, P(B) = `1/3` and P(A ∩ B) = `1/4`. Find: `"P"("B"/"A")`
A and B are two events such that P(A) = `1/2`, P(B) = `1/3` and P(A ∩ B) = `1/4`. Find: `"P"("A'"/"B'")`
Let E1 and E2 be two independent events such that P(E1) = P1 and P(E2) = P2. Describe in words of the events whose probabilities are: P1P2
Let E1 and E2 be two independent events such that P(E1) = P1 and P(E2) = P2. Describe in words of the events whose probabilities are: P1 + P2 – 2P1P2
A and B are events such that P(A) = 0.4, P(B) = 0.3 and P(A ∪ B) = 0.5. Then P(B′ ∩ A) equals ______.
If A and B are two events such that P(B) = `3/5`, P(A|B) = `1/2` and P(A ∪ B) = `4/5`, then P(A) equals ______.
If A and B are two independent events with P(A) = `3/5` and P(B) = `4/9`, then P(A′ ∩ B′) equals ______.
If the events A and B are independent, then P(A ∩ B) is equal to ______.
Two events E and F are independent. If P(E) = 0.3, P(E ∪ F) = 0.5, then P(E|F) – P(F|E) equals ______.
If A and B are independent, then P(exactly one of A, B occurs) = P(A)P(B') + P(B)P(A')
If A and B are two events such that P(A) > 0 and P(A) + P(B) >1, then P(B|A) ≥ `1 - ("P"("B'"))/("P"("A"))`
If A, B are two events such that `1/8 ≤ P(A ∩ B) ≤ 3/8` then
Two events 'A' and 'B' are said to be independent if
Let Bi(i = 1, 2, 3) be three independent events in a sample space. The probability that only B1 occur is α, only B2 occurs is β and only B3 occurs is γ. Let p be the probability that none of the events Bi occurs and these 4 probabilities satisfy the equations (α – 2β)p = αβ and (β – 3γ) = 2βy (All the probabilities are assumed to lie in the interval (0, 1)). Then `("P"("B"_1))/("P"("B"_3))` is equal to ______.
Five fair coins are tossed simultaneously. The probability of the events that at least one head comes up is ______.