Advertisements
Advertisements
प्रश्न
A, B, and C try to hit a target simultaneously but independently. Their respective probabilities of hitting the target are `3/4, 1/2` and `5/8`. Find the probability that the target
- is hit exactly by one of them
- is not hit by any one of them
- is hit
- is exactly hit by two of them
उत्तर
Let event A: A can hit the target,
event B: B can hit the target,
event C: C can hit the target.
∴ P(A) = `3/4`, P(B) = `1/2`, P(C) = `5/8`
∴ P(A') = 1 – P(A) = `1 - 3/4 = 1/4`
P(B') = 1 – P(B) = `1 - 1/2 = 1/2`
P(C') = 1 – P(C) = `1 - 5/8 = 3/8`
Since A, B, C are independent events,
A', B', C' are also independent events.
(a) Let event W: Target is hit exactly by one of them.
P(W) = P(A ∩ B' ∩ C') ∪ P(A' ∩ B' ∩ C') ∪ P(A' ∩ B' ∩ C')
= P(A) · P(B') · P(C') + P(A') · P(B) · P(C') + P(A') · P(B') · P(C)
= `(3/4 xx 1/2 xx 3/8) + (1/4 xx 1/2 xx 3/8) + (1/4 xx 1/2 xx 5/8)`
= `9/64 + 3/64 + 5/64`
= `17/64`
(b) Let event X: Target is not hit by any one of them.
P(X) = P(A' ∩ B' ∩ C')
= P(A') · P(B') · P(C')
`= 1/4 xx 1/2 xx 3/8`
`= 3/64`
(c) Let event Y: Target is hit.
P(Y) = 1 - P (target is not hit by any one of them)
`= 1 - 3/64`
`= 61/64`
(d) Let event Z: Target is hit by exactly two of them.
∴ P(Z) = P(A ∩ B ∩ C') ∪ P(A ∩ B' ∩ C) ∪ P(A' ∩ B ∩ C)
= P(A) · P(B) · P(C') + P(A) · P(B') · P(C) + P(A') · P(B) · P(C)
`= (3/4 xx 1/2 xx 3/8) + (3/4 xx 1/2 xx 5/8) + (1/4 xx 1/2 xx 5/8)`
`= 9/64 + 15/64 + 5/64`
`= 29/64`
APPEARS IN
संबंधित प्रश्न
A speaks truth in 60% of the cases, while B in 90% of the cases. In what percent of cases are they likely to contradict each other in stating the same fact? In the cases of contradiction do you think, the statement of B will carry more weight as he speaks truth in more number of cases than A?
If A and B are two independent events such that `P(barA∩ B) =2/15 and P(A ∩ barB) = 1/6`, then find P(A) and P(B).
Let A and B be independent events with P (A) = 0.3 and P (B) = 0.4. Find
- P (A ∩ B)
- P (A ∪ B)
- P (A | B)
- P (B | A)
Given two independent events A and B such that P (A) = 0.3, P (B) = 0.6. Find
- P (A and B)
- P(A and not B)
- P(A or B)
- P(neither A nor B)
Prove that if E and F are independent events, then the events E and F' are also independent.
In a race, the probabilities of A and B winning the race are `1/3` and `1/6` respectively. Find the probability of neither of them winning the race.
The probabilities of solving a specific problem independently by A and B are `1/3` and `1/5` respectively. If both try to solve the problem independently, find the probability that the problem is solved.
The odds against student X solving a business statistics problem are 8: 6 and odds in favour of student Y solving the same problem are 14: 16 What is the chance that the problem will be solved, if they try independently?
The probability that a student X solves a problem in dynamics is `2/5` and the probability that student Y solves the same problem is `1/4`. What is the probability that
- the problem is not solved
- the problem is solved
- the problem is solved exactly by one of them
The probability that a man who is 45 years old will be alive till he becomes 70 is `5/12`. The probability that his wife who is 40 years old will be alive till she becomes 65 is `3/8`. What is the probability that, 25 years hence,
- the couple will be alive
- exactly one of them will be alive
- none of them will be alive
- at least one of them will be alive
Solve the following:
Let A and B be independent events with P(A) = `1/4`, and P(A ∪ B) = 2P(B) – P(A). Find P(B)
Solve the following:
Find the probability that a year selected will have 53 Wednesdays
Solve the following:
Consider independent trails consisting of rolling a pair of fair dice, over and over What is the probability that a sum of 5 appears before sum of 7?
Let A and B be two independent events. Then P(A ∩ B) = P(A) + P(B)
Two dice are thrown together and the total score is noted. The events E, F and G are ‘a total of 4’, ‘a total of 9 or more’, and ‘a total divisible by 5’, respectively. Calculate P(E), P(F) and P(G) and decide which pairs of events, if any, are independent.
Let E1 and E2 be two independent events such that P(E1) = P1 and P(E2) = P2. Describe in words of the events whose probabilities are: P1P2
Two dice are tossed. Find whether the following two events A and B are independent: A = {(x, y): x + y = 11} B = {(x, y): x ≠ 5} where (x, y) denotes a typical sample point.
If A and B are two events and A ≠ Φ, B ≠ Φ, then ______.
If A and B are such events that P(A) > 0 and P(B) ≠ 1, then P(A′|B′) equals ______.
If A and B are two independent events with P(A) = `3/5` and P(B) = `4/9`, then P(A′ ∩ B′) equals ______.
Let A and B be two events such that P(A) = `3/8`, P(B) = `5/8` and P(A ∪ B) = `3/4`. Then P(A|B).P(A′|B) is equal to ______.
Let P(A) > 0 and P(B) > 0. Then A and B can be both mutually exclusive and independent.
If A and B are independent events, then A′ and B′ are also independent
If A and B are two independent events then P(A and B) = P(A).P(B).
If A and B′ are independent events, then P(A' ∪ B) = 1 – P (A) P(B')
If A and B are two events such that P(A|B) = p, P(A) = p, P(B) = `1/3` and P(A ∪ B) = `5/9`, then p = ______.
Let E1 and E2 be two independent events. Let P(E) denotes the probability of the occurrence of the event E. Further, let E'1 and E'2 denote the complements of E1 and E2, respectively. If P(E'1 ∩ E2) = `2/15` and P(E1 ∩ E'2) = `1/6`, then P(E1) is
If A, B are two events such that `1/8 ≤ P(A ∩ B) ≤ 3/8` then
The probability of obtaining an even prime number on each die when a pair of dice is rolled is
Two events 'A' and 'B' are said to be independent if
Let A and B be independent events P(A) = 0.3 and P(B) = 0.4. Find P(A ∩ B)
Given two independent events A and B such that P(A) = 0.3, P(B) = 0.6 and P(A' ∩ B') is ______.
The probability that A hits the target is `1/3` and the probability that B hits it, is `2/5`. If both try to hit the target independently, find the probability that the target is hit.
A problem in Mathematics is given to three students whose chances of solving it are `1/2, 1/3, 1/4` respectively. If the events of their solving the problem are independent then the probability that the problem will be solved, is ______.
The probability of the event A occurring is `1/3` and of the event B occurring is `1/2`. If A and B are independent events, then find the probability of neither A nor B occurring.