Advertisements
Advertisements
प्रश्न
A, B, and C try to hit a target simultaneously but independently. Their respective probabilities of hitting the target are `3/4, 1/2` and `5/8`. Find the probability that the target
- is hit exactly by one of them
- is not hit by any one of them
- is hit
- is exactly hit by two of them
उत्तर
Let event A: A can hit the target,
event B: B can hit the target,
event C: C can hit the target.
∴ P(A) = `3/4`, P(B) = `1/2`, P(C) = `5/8`
∴ P(A') = 1 – P(A) = `1 - 3/4 = 1/4`
P(B') = 1 – P(B) = `1 - 1/2 = 1/2`
P(C') = 1 – P(C) = `1 - 5/8 = 3/8`
Since A, B, C are independent events,
A', B', C' are also independent events.
(a) Let event W: Target is hit exactly by one of them.
P(W) = P(A ∩ B' ∩ C') ∪ P(A' ∩ B' ∩ C') ∪ P(A' ∩ B' ∩ C')
= P(A) · P(B') · P(C') + P(A') · P(B) · P(C') + P(A') · P(B') · P(C)
= `(3/4 xx 1/2 xx 3/8) + (1/4 xx 1/2 xx 3/8) + (1/4 xx 1/2 xx 5/8)`
= `9/64 + 3/64 + 5/64`
= `17/64`
(b) Let event X: Target is not hit by any one of them.
P(X) = P(A' ∩ B' ∩ C')
= P(A') · P(B') · P(C')
`= 1/4 xx 1/2 xx 3/8`
`= 3/64`
(c) Let event Y: Target is hit.
P(Y) = 1 - P (target is not hit by any one of them)
`= 1 - 3/64`
`= 61/64`
(d) Let event Z: Target is hit by exactly two of them.
∴ P(Z) = P(A ∩ B ∩ C') ∪ P(A ∩ B' ∩ C) ∪ P(A' ∩ B ∩ C)
= P(A) · P(B) · P(C') + P(A) · P(B') · P(C) + P(A') · P(B) · P(C)
`= (3/4 xx 1/2 xx 3/8) + (3/4 xx 1/2 xx 5/8) + (1/4 xx 1/2 xx 5/8)`
`= 9/64 + 15/64 + 5/64`
`= 29/64`
APPEARS IN
संबंधित प्रश्न
A card from a pack of 52 playing cards is lost. From the remaining cards of the pack three cards are drawn at random (without replacement) and are found to be all spades. Find the probability of the lost card being a spade.
Given that the events A and B are such that `P(A) = 1/2, PA∪B=3/5 and P (B) = p`. Find p if they are
- mutually exclusive
- independent.
Two events, A and B, will be independent if ______.
A speaks the truth in 60% of the cases, while B is 40% of the cases. In what percent of cases are they likely to contradict each other in stating the same fact?
The probabilities of solving a specific problem independently by A and B are `1/3` and `1/5` respectively. If both try to solve the problem independently, find the probability that the problem is solved.
An urn contains four tickets marked with numbers 112, 121, 122, 222 and one ticket is drawn at random. Let Ai (i = 1, 2, 3) be the event that ith digit of the number of the ticket drawn is 1. Discuss the independence of the events A1, A2, and A3.
The odds against a husband who is 55 years old living till he is 75 is 8: 5 and it is 4: 3 against his wife who is now 48, living till she is 68. Find the probability that at least one of them will be alive 20 years hence.
The odds against student X solving a business statistics problem are 8: 6 and odds in favour of student Y solving the same problem are 14: 16 What is the chance that the problem will be solved, if they try independently?
Two dice are thrown together. Let A be the event 'getting 6 on the first die' and B be the event 'getting 2 on the second die'. Are the events A and B independent?
The probability that a man who is 45 years old will be alive till he becomes 70 is `5/12`. The probability that his wife who is 40 years old will be alive till she becomes 65 is `3/8`. What is the probability that, 25 years hence,
- the couple will be alive
- exactly one of them will be alive
- none of them will be alive
- at least one of them will be alive
A bag contains 3 yellow and 5 brown balls. Another bag contains 4 yellow and 6 brown balls. If one ball is drawn from each bag, what is the probability that, the balls are of different color?
Bag A contains 3 red and 2 white balls and bag B contains 2 red and 5 white balls. A bag is selected at random, a ball is drawn and put into the other bag, and then a ball is drawn from that bag. Find the probability that both the balls drawn are of same color
A bag contains 3 red and 5 white balls. Two balls are drawn at random one after the other without replacement. Find the probability that both the balls are white.
Solution: Let,
A : First ball drawn is white
B : second ball drawn in white.
P(A) = `square/square`
After drawing the first ball, without replacing it into the bag a second ball is drawn from the remaining `square` balls.
∴ P(B/A) = `square/square`
∴ P(Both balls are white) = P(A ∩ B)
`= "P"(square) * "P"(square)`
`= square * square`
= `square`
A family has two children. Find the probability that both the children are girls, given that atleast one of them is a girl.
Solve the following:
If P(A) = `"P"("A"/"B") = 1/5, "P"("B"/"A") = 1/3` the find `"P"("B'"/"A'")`
Solve the following:
Let A and B be independent events with P(A) = `1/4`, and P(A ∪ B) = 2P(B) – P(A). Find `"P"("A"/"B")`
Solve the following:
Consider independent trails consisting of rolling a pair of fair dice, over and over What is the probability that a sum of 5 appears before sum of 7?
Two dice are thrown together. Let A be the event ‘getting 6 on the first die’ and B be the event ‘getting 2 on the second die’. Are the events A and B independent?
If A and B are independent events such that 0 < P(A) < 1 and 0 < P(B) < 1, then which of the following is not correct?
If A and B are independent events such that P(A) = p, P(B) = 2p and P(Exactly one of A, B) = `5/9`, then p = ______.
Let A and B be two independent events. Then P(A ∩ B) = P(A) + P(B)
Two dice are thrown together and the total score is noted. The events E, F and G are ‘a total of 4’, ‘a total of 9 or more’, and ‘a total divisible by 5’, respectively. Calculate P(E), P(F) and P(G) and decide which pairs of events, if any, are independent.
A and B are two events such that P(A) = `1/2`, P(B) = `1/3` and P(A ∩ B) = `1/4`. Find: `"P"("B"/"A")`
Let E1 and E2 be two independent events such that P(E1) = P1 and P(E2) = P2. Describe in words of the events whose probabilities are: 1 – (1 – P1)(1 – P2)
Let E1 and E2 be two independent events such that P(E1) = P1 and P(E2) = P2. Describe in words of the events whose probabilities are: P1 + P2 – 2P1P2
Two dice are tossed. Find whether the following two events A and B are independent: A = {(x, y): x + y = 11} B = {(x, y): x ≠ 5} where (x, y) denotes a typical sample point.
If A and B are two events and A ≠ Φ, B ≠ Φ, then ______.
If A and B are two independent events with P(A) = `3/5` and P(B) = `4/9`, then P(A′ ∩ B′) equals ______.
Let P(A) > 0 and P(B) > 0. Then A and B can be both mutually exclusive and independent.
If A and B are independent events, then A′ and B′ are also independent
If A and B are mutually exclusive events, then they will be independent also.
Events A and Bare such that P(A) = `1/2`, P(B) = `7/12` and `P(barA ∪ barB) = 1/4`. Find whether the events A and B are independent or not.
The probability that A hits the target is `1/3` and the probability that B hits it, is `2/5`. If both try to hit the target independently, find the probability that the target is hit.
Five fair coins are tossed simultaneously. The probability of the events that at least one head comes up is ______.