हिंदी

Five fair coins are tossed simultaneously. The probability of the events that at least one head comes up is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

Five fair coins are tossed simultaneously. The probability of the events that at least one head comes up is ______.

विकल्प

  • `27/32`

  • `5/32`

  • `31/32`

  • `1/32`

MCQ
रिक्त स्थान भरें

उत्तर

Five fair coins are tossed simultaneously. The probability of the events that at least one head comes up is `underlinebb(31/32)`.

Explanation:

Total cases = 25 = 32

One of the cases will be all three tails.

So remaining 31 cases are valid.

∴ P(event getting at least one head) = `31/32`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2022-2023 (March) Delhi Set 1

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

A speaks truth in 60% of the cases, while B in 90% of the cases. In what percent of cases are they likely to contradict each other in stating the same fact? In the cases of contradiction do you think, the statement of B will carry more weight as he speaks truth in more number of cases than A?


Given that the events A and B are such that `P(A) = 1/2, PA∪B=3/5 and P (B) = p`. Find p if they are

  1. mutually exclusive
  2. independent.

If each element of a second order determinant is either zero or one, what is the probability that the value of the determinant is positive? (Assume that the individual entries of the determinant are chosen independently, each value being assumed with probability `1/2`).


A fair die is rolled. If face 1 turns up, a ball is drawn from Bag A. If face 2 or 3 turns up, a ball is drawn from Bag B. If face 4 or 5 or 6 turns up, a ball is drawn from Bag C. Bag A contains 3 red and 2 white balls, Bag B contains 3 red and 4 white balls and Bag C contains 4 red and 5 white balls. The die is rolled, a Bag is picked up and a ball is drawn. If the drawn ball is red; what is the probability that it is drawn from Bag B?


A problem in statistics is given to three students A, B, and C. Their chances of solving the problem are `1/3`, `1/4`, and `1/5` respectively. If all of them try independently, what is the probability that, exactly two students solve the problem?


The probability that a student X solves a problem in dynamics is `2/5` and the probability that student Y solves the same problem is `1/4`. What is the probability that

  1. the problem is not solved
  2. the problem is solved
  3. the problem is solved exactly by one of them

Two hundred patients who had either Eye surgery or Throat surgery were asked whether they were satisfied or unsatisfied regarding the result of their surgery

The follwoing table summarizes their response:

Surgery Satisfied Unsatisfied Total
Throat 70 25 95
Eye 90 15 105
Total 160 40 200

If one person from the 200 patients is selected at random, determine the probability that the person was satisfied given that the person had Throat surgery.


The probability that a man who is 45 years old will be alive till he becomes 70 is `5/12`. The probability that his wife who is 40 years old will be alive till she becomes 65 is `3/8`. What is the probability that, 25 years hence,

  1. the couple will be alive
  2. exactly one of them will be alive
  3. none of them will be alive
  4. at least one of them will be alive

A bag contains 3 yellow and 5 brown balls. Another bag contains 4 yellow and 6 brown balls. If one ball is drawn from each bag, what is the probability that, the balls are of different color?


A family has two children. Find the probability that both the children are girls, given that atleast one of them is a girl.


Select the correct option from the given alternatives :

The odds against an event are 5:3 and the odds in favour of another independent event are 7:5. The probability that at least one of the two events will occur is


Solve the following:

If P(A) = `"P"("A"/"B") = 1/5, "P"("B"/"A") = 1/3` the find `"P"("B'"/"A'")`


Solve the following:

Let A and B be independent events with P(A) = `1/4`, and P(A ∪ B) = 2P(B) – P(A). Find P(B)


Solve the following:

Let A and B be independent events with P(A) = `1/4`, and P(A ∪ B) = 2P(B) – P(A). Find `"P"("A"/"B")`


10% of the bulbs produced in a factory are of red colour and 2% are red and defective. If one bulb is picked up at random, determine the probability of its being defective if it is red.


If A and B are independent events such that P(A) = p, P(B) = 2p and P(Exactly one of A, B) = `5/9`, then p = ______.


Two dice are thrown together and the total score is noted. The events E, F and G are ‘a total of 4’, ‘a total of 9 or more’, and ‘a total divisible by 5’, respectively. Calculate P(E), P(F) and P(G) and decide which pairs of events, if any, are independent.


A and B are two events such that P(A) = `1/2`, P(B) = `1/3` and P(A ∩ B) = `1/4`. Find: `"P"("A'"/"B'")`


Let E1 and E2 be two independent events such that P(E1) = P1 and P(E2) = P2. Describe in words of the events whose probabilities are: P1P2 


If A and B are two events such that P(A) = `1/2`, P(B) = `1/3` and P(A/B) = `1/4`, P(A' ∩ B') equals ______.


In Question 64 above, P(B|A′) is equal to ______.


Let A and B be two events such that P(A) = `3/8`, P(B) = `5/8` and P(A ∪ B) = `3/4`. Then P(A|B).P(A′|B) is equal to ______.


Let P(A) > 0 and P(B) > 0. Then A and B can be both mutually exclusive and independent.


If A and B are two events such that P(A) > 0 and P(A) + P(B) >1, then P(B|A) ≥ `1 - ("P"("B'"))/("P"("A"))`


One card is drawn at random from a well-shuffled deck of 52 cards. In which of the following case is the events E and F independent?

E : ‘the card drawn is black’

F : ‘the card drawn is a king’


Let E1 and E2 be two independent events. Let P(E) denotes the probability of the occurrence of the event E. Further, let E'1 and E'2 denote the complements of E1 and E2, respectively. If P(E'1 ∩ E2) = `2/15` and P(E1 ∩ E'2) = `1/6`, then P(E1) is


Two events 'A' and 'B' are said to be independent if


If P(A) = `3/5` and P(B) = `1/5`, find P(A ∩ B), If A and B are independent events.


Two cards are drawn at random and without replacement from a pack of 52 playing cards. Find the probability that both the cards are black.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×