हिंदी

A Fair Die is Rolled. If Face 1 Turns Up, a Ball is Drawn from Bag A. If Face 2 Or 3 Turns Up, a Ball is Drawn from Bag B. If Face 4 Or 5 Or 6 Turns Up, a Ball is Drawn from Bag C - Mathematics

Advertisements
Advertisements

प्रश्न

A fair die is rolled. If face 1 turns up, a ball is drawn from Bag A. If face 2 or 3 turns up, a ball is drawn from Bag B. If face 4 or 5 or 6 turns up, a ball is drawn from Bag C. Bag A contains 3 red and 2 white balls, Bag B contains 3 red and 4 white balls and Bag C contains 4 red and 5 white balls. The die is rolled, a Bag is picked up and a ball is drawn. If the drawn ball is red; what is the probability that it is drawn from Bag B?

योग

उत्तर

Let E1, E2, E3 be the events that a die is thrown and getting 1, 2 or 3 and 4 or 5 or 6 respectively.

`"P"("E"_1) = 1/6 , "P"("E"_2) = 2/6 , "P"("E"_3) = 3/6`

Let A be the event that drawn ball is red

`"P"("A"//"E"_1) = 3/5 ,  "P"("A"//"E"_2) = 3/7 , "P"("A"//"E"_3) = 4/9`

Required probability i.e. drawn ball is red from bag B is :

`"P"("E"_2//"A") = ("P"("E"_2) xx "P"("A"//"E"_2))/("P"("E"_1) xx "P"("A"//"E"_1) + "P"("E"_2) xx "P"("A"//"E"_2) + "P"("E"_3)xx "P"("A"//"E"_3))`

`= (2/6 xx 3/7)/(1/6 xx 3/5 + 2/6 xx 3/7 + 3/6 xx 4/9)`

`= (1/7)/(1/10 + 1/7 + 2/9)`

`= 1/7 xx (7 xx 9 xx 10)/293 = 90/293`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2016-2017 (March) Set 1

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

A speaks truth in 60% of the cases, while B in 90% of the cases. In what percent of cases are they likely to contradict each other in stating the same fact? In the cases of contradiction do you think, the statement of B will carry more weight as he speaks truth in more number of cases than A?


Let A and B be independent events with P (A) = 0.3 and P (B) = 0.4. Find 

  1. P (A ∩ B)
  2. P (A ∪ B)
  3. P (A | B)
  4. P (B | A)

If each element of a second order determinant is either zero or one, what is the probability that the value of the determinant is positive? (Assume that the individual entries of the determinant are chosen independently, each value being assumed with probability `1/2`).


If P(A) = 0·4, P(B) = p, P(A ⋃ B) = 0·6 and A and B are given to be independent events, find the value of 'p'.


A problem in statistics is given to three students A, B, and C. Their chances of solving the problem are `1/3`, `1/4`, and `1/5` respectively. If all of them try independently, what is the probability that, problem is solved?


A problem in statistics is given to three students A, B, and C. Their chances of solving the problem are `1/3`, `1/4`, and `1/5` respectively. If all of them try independently, what is the probability that, problem is not solved


One-shot is fired from each of the three guns. Let A, B, and C denote the events that the target is hit by the first, second and third guns respectively. assuming that A, B, and C are independent events and that P(A) = 0.5, P(B) = 0.6, and P(C) = 0.8, then find the probability that at least one hit is registered.


The odds against a husband who is 55 years old living till he is 75 is 8: 5 and it is 4: 3 against his wife who is now 48, living till she is 68. Find the probability that at least one of them will be alive 20 years hence.


Two hundred patients who had either Eye surgery or Throat surgery were asked whether they were satisfied or unsatisfied regarding the result of their surgery

The follwoing table summarizes their response:

Surgery Satisfied Unsatisfied Total
Throat 70 25 95
Eye 90 15 105
Total 160 40 200

If one person from the 200 patients is selected at random, determine the probability that person was unsatisfied given that the person had eye surgery


A bag contains 3 red and 5 white balls. Two balls are drawn at random one after the other without replacement. Find the probability that both the balls are white.

Solution: Let,

A : First ball drawn is white

B : second ball drawn in white.

P(A) = `square/square`

After drawing the first ball, without replacing it into the bag a second ball is drawn from the remaining `square` balls.

∴ P(B/A) = `square/square`

∴ P(Both balls are white) = P(A ∩ B)

`= "P"(square) * "P"(square)`

`= square * square`

= `square`


Select the correct option from the given alternatives :

The odds against an event are 5:3 and the odds in favour of another independent event are 7:5. The probability that at least one of the two events will occur is


Solve the following:

A and B throw a die alternatively till one of them gets a 3 and wins the game. Find the respective probabilities of winning. (Assuming A begins the game)


Two dice are thrown together. Let A be the event ‘getting 6 on the first die’ and B be the event ‘getting 2 on the second die’. Are the events A and B independent?


If A and B are independent events such that 0 < P(A) < 1 and 0 < P(B) < 1, then which of the following is not correct?


Three events A, B and C are said to be independent if P(A ∩ B ∩ C) = P(A) P(B) P(C).


Refer to Question 1 above. If the die were fair, determine whether or not the events A and B are independent.


Two dice are thrown together and the total score is noted. The events E, F and G are ‘a total of 4’, ‘a total of 9 or more’, and ‘a total divisible by 5’, respectively. Calculate P(E), P(F) and P(G) and decide which pairs of events, if any, are independent.


Let E1 and E2 be two independent events such that P(E1) = P1 and P(E2) = P2. Describe in words of the events whose probabilities are: 1 – (1 – P1)(1 – P2


In Question 64 above, P(B|A′) is equal to ______.


If A and B are such events that P(A) > 0 and P(B) ≠ 1, then P(A′|B′) equals ______.


If the events A and B are independent, then P(A ∩ B) is equal to ______.


Two events E and F are independent. If P(E) = 0.3, P(E ∪ F) = 0.5, then P(E|F) – P(F|E) equals ______.


If A, B and C are three independent events such that P(A) = P(B) = P(C) = p, then P(At least two of A, B, C occur) = 3p2 – 2p3 


One card is drawn at random from a well-shuffled deck of 52 cards. In which of the following case is the events E and F independent?

E : ‘the card drawn is a spade’

F : ‘the card drawn is an ace’


One card is drawn at random from a well-shuffled deck of 52 cards. In which of the following case is the events E and F independent?

E : ‘the card drawn is black’

F : ‘the card drawn is a king’


Two cards are drawn at random and without replacement from a pack of 52 playing cards. Find the probability that both the cards are black.


Given two independent events A and B such that P(A) = 0.3, P(B) = 0.6 and P(A' ∩ B') is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×