हिंदी

The odds against a husband who is 55 years old living till he is 75 is 8: 5 and it is 4: 3 against his wife who is now 48, living till she is 68. Find the probability that at least one - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

The odds against a husband who is 55 years old living till he is 75 is 8: 5 and it is 4: 3 against his wife who is now 48, living till she is 68. Find the probability that at least one of them will be alive 20 years hence.

योग

उत्तर

Let A be the event that husband would be alive after 20 years.
Odds against A are 8: 5
∴ The probability of occurrence of event A is given by 

P(A) = `5/(8 + 5) = 5/13`

∴ P(A') = 1 – P(A) = `1 - 5/13 = 8/13`
Let B be the event that wife would be alive after 20 years.
Odds against B are 4: 3
∴ The probability of occurrence of event B is given by 

P(B) = `3/(4 + 3) = 3/7`

∴ P(B') = 1 – P(B) = `1 - 3/7 = 4/7`
Since A and B are independent events
∴ A' and B' are also independent events
Let Y be the event that at least one will be alive after 20 years.
∴ P(Y) = P(at least one would be alive)
= 1 – P(both would not be alive)
= 1 – P(A' ∩ B')
= 1 – P(A') . P(B')

= `1 - 8/13 xx 4/7`

= `1 - 32/91`

= `59/91`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Probability - Miscellaneous Exercise 7 [पृष्ठ ११०]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Commerce) [English] 11 Standard Maharashtra State Board
अध्याय 7 Probability
Miscellaneous Exercise 7 | Q 9. (b) | पृष्ठ ११०

संबंधित प्रश्न

A fair die is rolled. If face 1 turns up, a ball is drawn from Bag A. If face 2 or 3 turns up, a ball is drawn from Bag B. If face 4 or 5 or 6 turns up, a ball is drawn from Bag C. Bag A contains 3 red and 2 white balls, Bag B contains 3 red and 4 white balls and Bag C contains 4 red and 5 white balls. The die is rolled, a Bag is picked up and a ball is drawn. If the drawn ball is red; what is the probability that it is drawn from Bag B?


A problem in statistics is given to three students A, B, and C. Their chances of solving the problem are `1/3`, `1/4`, and `1/5` respectively. If all of them try independently, what is the probability that, problem is solved?


One-shot is fired from each of the three guns. Let A, B, and C denote the events that the target is hit by the first, second and third guns respectively. assuming that A, B, and C are independent events and that P(A) = 0.5, P(B) = 0.6, and P(C) = 0.8, then find the probability that at least one hit is registered.


An urn contains four tickets marked with numbers 112, 121, 122, 222 and one ticket is drawn at random. Let Ai (i = 1, 2, 3) be the event that ith digit of the number of the ticket drawn is 1. Discuss the independence of the events A1, A2, and A3.


The probability that a man who is 45 years old will be alive till he becomes 70 is `5/12`. The probability that his wife who is 40 years old will be alive till she becomes 65 is `3/8`. What is the probability that, 25 years hence,

  1. the couple will be alive
  2. exactly one of them will be alive
  3. none of them will be alive
  4. at least one of them will be alive

Bag A contains 3 red and 2 white balls and bag B contains 2 red and 5 white balls. A bag is selected at random, a ball is drawn and put into the other bag, and then a ball is drawn from that bag. Find the probability that both the balls drawn are of same color


Solve the following:

Consider independent trails consisting of rolling a pair of fair dice, over and over What is the probability that a sum of 5 appears before sum of 7?


The probability that at least one of the two events A and B occurs is 0.6. If A and B occur simultaneously with probability 0.3, evaluate `"P"(bar"A") + "P"(bar"B")`


A and B are two events such that P(A) = `1/2`, P(B) = `1/3` and P(A ∩ B) = `1/4`. Find: `"P"("A'"/"B")`


A and B are two events such that P(A) = `1/2`, P(B) = `1/3` and P(A ∩ B) = `1/4`. Find: `"P"("A'"/"B'")`


Three events A, B and C have probabilities `2/5, 1/3` and `1/2`, , respectively. Given that P(A ∩ C) = `1/5` and P(B ∩ C) = `1/4`, find the values of P(C|B) and P(A' ∩ C').


Let E1 and E2 be two independent events such that P(E1) = P1 and P(E2) = P2. Describe in words of the events whose probabilities are: P1 + P2 – 2P1P2 


If A and B are two events such that P(B) = `3/5`, P(A|B) = `1/2` and P(A ∪ B) = `4/5`, then P(A) equals ______.


If A and B are independent events, then A′ and B′ are also independent


Let A and B be two events. If P(A | B) = P(A), then A is ______ of B.


Let A and B be independent events P(A) = 0.3 and P(B) = 0.4. Find P(A ∩ B)


The probability that A hits the target is `1/3` and the probability that B hits it, is `2/5`. If both try to hit the target independently, find the probability that the target is hit.


Let EC denote the complement of an event E. Let E1, E2 and E3 be any pairwise independent events with P(E1) > 0 and P(E1 ∩ E2 ∩ E3) = 0. Then `"P"(("E"_2^"C"  ∩ "E"_3^"C")/"E"_1)` is equal to ______.


Given two independent events, if the probability that exactly one of them occurs is `26/49` and the probability that none of them occurs is `15/49`, then the probability of more probable of the two events is ______.


Five fair coins are tossed simultaneously. The probability of the events that at least one head comes up is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×