हिंदी

Let E1 and E2 be two independent events such that P(E1) = P1 and P(E2) = P2. Describe in words of the events whose probabilities are: P1 + P2 – 2P1P2 - Mathematics

Advertisements
Advertisements

प्रश्न

Let E1 and E2 be two independent events such that P(E1) = P1 and P(E2) = P2. Describe in words of the events whose probabilities are: P1 + P2 – 2P1P2 

योग

उत्तर

Here, P(E1) = P1 and P(E2) = P2

P1 + P2 – 2P1P2 = P(E1) + P(E2) – 2P(E1).P(E2)

= P(E1) + P(E2) – 2P(E1 ∩ E2)

= P(E1 ∪ E2) – 2P(E1 ∩ E2)

So, either E1 or E2 occurs but not both.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 13: Probability - Exercise [पृष्ठ २७२]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 13 Probability
Exercise | Q 9. (iv) | पृष्ठ २७२

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Let A and B be independent events with P (A) = 0.3 and P (B) = 0.4. Find 

  1. P (A ∩ B)
  2. P (A ∪ B)
  3. P (A | B)
  4. P (B | A)

Probability of solving specific problem independently by A and B are `1/2` and `1/3` respectively. If both try to solve the problem independently, find the probability that

  1. the problem is solved
  2. exactly one of them solves the problem.

Two events, A and B, will be independent if ______.


Prove that if E and F are independent events, then the events E and F' are also independent. 


A speaks the truth in 60% of the cases, while B is 40% of the cases. In what percent of cases are they likely to contradict each other in stating the same fact?


If P(A) = 0·4, P(B) = p, P(A ⋃ B) = 0·6 and A and B are given to be independent events, find the value of 'p'.


A problem in statistics is given to three students A, B, and C. Their chances of solving the problem are `1/3`, `1/4`, and `1/5` respectively. If all of them try independently, what is the probability that, problem is solved?


The probability that a 50-year old man will be alive till age 60 is 0.83 and the probability that a 45-year old woman will be alive till age 55 is 0.97. What is the probability that a man whose age is 50 and his wife whose age is 45 will both be alive after 10 years?


The odds against student X solving a business statistics problem are 8: 6 and odds in favour of student Y solving the same problem are 14: 16 What is the chance that the problem will be solved, if they try independently?


The odds against student X solving a business statistics problem are 8: 6 and odds in favour of student Y solving the same problem are 14: 16 What is the probability that neither solves the problem?


Two hundred patients who had either Eye surgery or Throat surgery were asked whether they were satisfied or unsatisfied regarding the result of their surgery

The follwoing table summarizes their response:

Surgery Satisfied Unsatisfied Total
Throat 70 25 95
Eye 90 15 105
Total 160 40 200

If one person from the 200 patients is selected at random, determine the probability that person was unsatisfied given that the person had eye surgery


Two dice are thrown together. Let A be the event 'getting 6 on the first die' and B be the event 'getting 2 on the second die'. Are the events A and B independent?


A bag contains 3 yellow and 5 brown balls. Another bag contains 4 yellow and 6 brown balls. If one ball is drawn from each bag, what is the probability that, both the balls are of the same color?


A family has two children. Find the probability that both the children are girls, given that atleast one of them is a girl.


Solve the following:

For three events A, B and C, we know that A and C are independent, B and C are independent, A and B are disjoint, P(A ∪ C) = `2/3`, P(B ∪ C) = `3/4`, P(A ∪ B ∪ C) = `11/12`. Find P(A), P(B) and P(C)


Solve the following:

A and B throw a die alternatively till one of them gets a 3 and wins the game. Find the respective probabilities of winning. (Assuming A begins the game)


Solve the following:

A machine produces parts that are either good (90%), slightly defective (2%), or obviously defective (8%). Produced parts get passed through an automatic inspection machine, which is able to detect any part that is obviously defective and discard it. What is the quality of the parts that make it throught the inspection machine and get shipped?


Three events A, B and C are said to be independent if P(A ∩ B ∩ C) = P(A) P(B) P(C).


Refer to Question 1 above. If the die were fair, determine whether or not the events A and B are independent.


A and B are two events such that P(A) = `1/2`, P(B) = `1/3` and P(A ∩ B) = `1/4`. Find: `"P"("B"/"A")`


Let E1 and E2 be two independent events such that P(E1) = P1 and P(E2) = P2. Describe in words of the events whose probabilities are: (1 – P1) P2 


If A and B are two independent events with P(A) = `3/5` and P(B) = `4/9`, then P(A′ ∩ B′) equals ______.


If A and B are two events such that P(A) > 0 and P(A) + P(B) >1, then P(B|A) ≥ `1 - ("P"("B'"))/("P"("A"))`


Two cards are drawn at random and without replacement from a pack of 52 playing cards. Find the probability that both the cards are black.


Events A and Bare such that P(A) = `1/2`, P(B) = `7/12` and `P(barA ∪ barB) = 1/4`. Find whether the events A and B are independent or not.


Let Bi(i = 1, 2, 3) be three independent events in a sample space. The probability that only B1 occur is α, only B2 occurs is β and only B3 occurs is γ. Let p be the probability that none of the events Bi occurs and these 4 probabilities satisfy the equations (α – 2β)p = αβ and (β – 3γ) = 2βy (All the probabilities are assumed to lie in the interval (0, 1)). Then `("P"("B"_1))/("P"("B"_3))` is equal to ______.


A problem in Mathematics is given to three students whose chances of solving it are `1/2, 1/3, 1/4` respectively. If the events of their solving the problem are independent then the probability that the problem will be solved, is ______.


Given two events A and B such that (A/B) = 0.25 and P(A ∩ B) = 0.12. The value P(A ∩ B') is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×