Advertisements
Advertisements
प्रश्न
Events A and Bare such that P(A) = `1/2`, P(B) = `7/12` and `P(barA ∪ barB) = 1/4`. Find whether the events A and B are independent or not.
उत्तर
Given, P(A) = `1/2`, P(B) = `7/12`
And `P(barA ∪ barB) = 1/4`
For A and B are independent
P(A ∩ B) = P(A).P(B) ...(i)
Now, `P(barA ∪ barB)` = P(A ∩ B)
⇒ `P(barA ∪ barB)` = 1 – P(A ∩ B)
⇒ P(A ∩ B) = `1 - P(barA ∪ barB)`
⇒ P(A ∩ B) = `1 - 1/4 = 3/4` ...(ii)
Now, P(A).P(B) = `1/2 xx 7/12 = 7/24` ...(iii)
Since from equations (ii) and (ill)
P(A ∩ B) ≠ P(A).P(B)
Therefore, events A and B are not independent.
APPEARS IN
संबंधित प्रश्न
If A and B are two independent events such that `P(barA∩ B) =2/15 and P(A ∩ barB) = 1/6`, then find P(A) and P(B).
A fair coin and an unbiased die are tossed. Let A be the event ‘head appears on the coin’ and B be the event ‘3 on the die’. Check whether A and B are independent events or not.
Let E and F be events with `P(E) = 3/5, P(F) = 3/10 and P(E ∩ F) = 1/5`. Are E and F independent?
Given that the events A and B are such that `P(A) = 1/2, PA∪B=3/5 and P (B) = p`. Find p if they are
- mutually exclusive
- independent.
Let A and B be independent events with P (A) = 0.3 and P (B) = 0.4. Find
- P (A ∩ B)
- P (A ∪ B)
- P (A | B)
- P (B | A)
If each element of a second order determinant is either zero or one, what is the probability that the value of the determinant is positive? (Assume that the individual entries of the determinant are chosen independently, each value being assumed with probability `1/2`).
One-shot is fired from each of the three guns. Let A, B, and C denote the events that the target is hit by the first, second and third guns respectively. assuming that A, B, and C are independent events and that P(A) = 0.5, P(B) = 0.6, and P(C) = 0.8, then find the probability that at least one hit is registered.
The odds against a husband who is 55 years old living till he is 75 is 8: 5 and it is 4: 3 against his wife who is now 48, living till she is 68. Find the probability that the couple will be alive 20 years hence.
The probability that a student X solves a problem in dynamics is `2/5` and the probability that student Y solves the same problem is `1/4`. What is the probability that
- the problem is not solved
- the problem is solved
- the problem is solved exactly by one of them
Bag A contains 3 red and 2 white balls and bag B contains 2 red and 5 white balls. A bag is selected at random, a ball is drawn and put into the other bag, and then a ball is drawn from that bag. Find the probability that both the balls drawn are of same color
A family has two children. Find the probability that both the children are girls, given that atleast one of them is a girl.
Solve the following:
Let A and B be independent events with P(A) = `1/4`, and P(A ∪ B) = 2P(B) – P(A). Find `"P"("B'"/"A")`
Solve the following:
A machine produces parts that are either good (90%), slightly defective (2%), or obviously defective (8%). Produced parts get passed through an automatic inspection machine, which is able to detect any part that is obviously defective and discard it. What is the quality of the parts that make it throught the inspection machine and get shipped?
If A and B are independent events such that 0 < P(A) < 1 and 0 < P(B) < 1, then which of the following is not correct?
If A and B′ are independent events then P(A′ ∪ B) = 1 – ______.
Let A and B be two independent events. Then P(A ∩ B) = P(A) + P(B)
Three events A, B and C are said to be independent if P(A ∩ B ∩ C) = P(A) P(B) P(C).
Refer to Question 1 above. If the die were fair, determine whether or not the events A and B are independent.
Three events A, B and C have probabilities `2/5, 1/3` and `1/2`, , respectively. Given that P(A ∩ C) = `1/5` and P(B ∩ C) = `1/4`, find the values of P(C|B) and P(A' ∩ C').
Let E1 and E2 be two independent events such that P(E1) = P1 and P(E2) = P2. Describe in words of the events whose probabilities are: 1 – (1 – P1)(1 – P2)
If A and B are two events and A ≠ Φ, B ≠ Φ, then ______.
In Question 64 above, P(B|A′) is equal to ______.
Two events E and F are independent. If P(E) = 0.3, P(E ∪ F) = 0.5, then P(E|F) – P(F|E) equals ______.
Let P(A) > 0 and P(B) > 0. Then A and B can be both mutually exclusive and independent.
If A and B are independent events, then A′ and B′ are also independent
If A and B are two events such that P(A) > 0 and P(A) + P(B) >1, then P(B|A) ≥ `1 - ("P"("B'"))/("P"("A"))`
Let A and B be two events. If P(A | B) = P(A), then A is ______ of B.
The probability of the event A occurring is `1/3` and of the event B occurring is `1/2`. If A and B are independent events, then find the probability of neither A nor B occurring.