Advertisements
Advertisements
प्रश्न
Two events E and F are independent. If P(E) = 0.3, P(E ∪ F) = 0.5, then P(E|F) – P(F|E) equals ______.
विकल्प
`2/7`
`3/35`
`1/70`
`1/7`
उत्तर
Two events E and F are independent. If P(E) = 0.3, P(E ∪ F) = 0.5, then P(E|F) – P(F|E) equals `1/70`.
Explanation:
Given that: E and F are independent events such that
P(E) = 0.3 and P(E ∪ F) = 0.5
P(E ∪ F) = P(E) + P(F) – P(E ∩ F)
0.5 = 0.3 + P(F) – P(E).P(F)
⇒ 0.5 – 0.3 = P(F)[1 – P(E)]
⇒ 0.2 = P(F)(1 – 0.3)
⇒ 0.2 = P(F).(0.7)
∴ P(F) = `0.2/0.7 = 2/7`
Now `"P"("E"/"F") - "P"("F"/"E") = ("P"("E" ∩ "F"))/("P"("F")) - ("P"("E" ∩ "F"))/("P"("E"))`
= `("P"("E")."P"("F"))/("P"("F")) - ("P"("E")."P"("F"))/("P"("E"))`
= P(E) – P(F)
= `3/10 - 2/7`
= `1/70`
APPEARS IN
संबंधित प्रश्न
A die, whose faces are marked 1, 2, 3 in red and 4, 5, 6 in green is tossed. Let A be the event "number obtained is even" and B be the event "number obtained is red". Find if A and B are independent events.
If A and B are two events such that `P(A) = 1/4, P(B) = 1/2 and P(A ∩ B) = 1/8`, find P (not A and not B).
Probability of solving specific problem independently by A and B are `1/2` and `1/3` respectively. If both try to solve the problem independently, find the probability that
- the problem is solved
- exactly one of them solves the problem.
One card is drawn at random from a well-shuffled deck of 52 cards. In which of the following case is the events E and F independent?
E : ‘the card drawn is a king or queen’
F : ‘the card drawn is a queen or jack’
A problem in statistics is given to three students A, B, and C. Their chances of solving the problem are `1/3`, `1/4`, and `1/5` respectively. If all of them try independently, what is the probability that, problem is solved?
The odds against a husband who is 55 years old living till he is 75 is 8: 5 and it is 4: 3 against his wife who is now 48, living till she is 68. Find the probability that the couple will be alive 20 years hence.
The odds against a husband who is 55 years old living till he is 75 is 8: 5 and it is 4: 3 against his wife who is now 48, living till she is 68. Find the probability that at least one of them will be alive 20 years hence.
Two dice are thrown together. Let A be the event 'getting 6 on the first die' and B be the event 'getting 2 on the second die'. Are the events A and B independent?
Bag A contains 3 red and 2 white balls and bag B contains 2 red and 5 white balls. A bag is selected at random, a ball is drawn and put into the other bag, and then a ball is drawn from that bag. Find the probability that both the balls drawn are of same color
A bag contains 3 red and 5 white balls. Two balls are drawn at random one after the other without replacement. Find the probability that both the balls are white.
Solution: Let,
A : First ball drawn is white
B : second ball drawn in white.
P(A) = `square/square`
After drawing the first ball, without replacing it into the bag a second ball is drawn from the remaining `square` balls.
∴ P(B/A) = `square/square`
∴ P(Both balls are white) = P(A ∩ B)
`= "P"(square) * "P"(square)`
`= square * square`
= `square`
A family has two children. Find the probability that both the children are girls, given that atleast one of them is a girl.
Solve the following:
If P(A ∩ B) = `1/2`, P(B ∩ C) = `1/3`, P(C ∩ A) = `1/6` then find P(A), P(B) and P(C), If A,B,C are independent events.
Solve the following:
Let A and B be independent events with P(A) = `1/4`, and P(A ∪ B) = 2P(B) – P(A). Find P(B)
Solve the following:
A and B throw a die alternatively till one of them gets a 3 and wins the game. Find the respective probabilities of winning. (Assuming A begins the game)
If A and B are independent events such that P(A) = p, P(B) = 2p and P(Exactly one of A, B) = `5/9`, then p = ______.
Let E1 and E2 be two independent events such that P(E1) = P1 and P(E2) = P2. Describe in words of the events whose probabilities are: 1 – (1 – P1)(1 – P2)
If A and B are two events such that P(A) = `1/2`, P(B) = `1/3` and P(A/B) = `1/4`, P(A' ∩ B') equals ______.
A and B are events such that P(A) = 0.4, P(B) = 0.3 and P(A ∪ B) = 0.5. Then P(B′ ∩ A) equals ______.
In Question 64 above, P(B|A′) is equal to ______.
If A and B are such events that P(A) > 0 and P(B) ≠ 1, then P(A′|B′) equals ______.
If A and B are mutually exclusive events, then they will be independent also.
Two independent events are always mutually exclusive.
If A and B are two events such that P(A) > 0 and P(A) + P(B) >1, then P(B|A) ≥ `1 - ("P"("B'"))/("P"("A"))`
Let A and B be two events. If P(A | B) = P(A), then A is ______ of B.
One card is drawn at random from a well-shuffled deck of 52 cards. In which of the following case is the events E and F independent?
E : ‘the card drawn is black’
F : ‘the card drawn is a king’
Given two independent events A and B such that P(A) = 0.3, P(B) = 0.6 and P(A' ∩ B') is ______.
Events A and Bare such that P(A) = `1/2`, P(B) = `7/12` and `P(barA ∪ barB) = 1/4`. Find whether the events A and B are independent or not.
Let EC denote the complement of an event E. Let E1, E2 and E3 be any pairwise independent events with P(E1) > 0 and P(E1 ∩ E2 ∩ E3) = 0. Then `"P"(("E"_2^"C" ∩ "E"_3^"C")/"E"_1)` is equal to ______.
Given two independent events, if the probability that exactly one of them occurs is `26/49` and the probability that none of them occurs is `15/49`, then the probability of more probable of the two events is ______.