Advertisements
Advertisements
प्रश्न
A problem in statistics is given to three students A, B, and C. Their chances of solving the problem are `1/3`, `1/4`, and `1/5` respectively. If all of them try independently, what is the probability that, problem is solved?
उत्तर
Let A be the event that student A can solve the problem.
B be the event that student B can solve problem.
C be the event that student C can solve problem.
∴ P(A) = `1/3`, P(B) = `1/4` and P(C) = `1/5`
P(A') = 1 − P(A) = `1-1/3=2/3`
P(B') = 1 − P(B) = `1-1/4=3/4`
P(C') = 1 − P(C) = `1-1/5=4/5`
Since A, B, C are independent events
∴ A', B', C' are also independent events
Let X be the event that problem is solved.
Problem can be solved if at least one of the three students solves the problem.
P(X) = P (at least one student solves the problem)
= 1 – P .........(no student solved problem)
= 1 – P (A' ∩ B' ∩ C')
= 1 – P(A') P(B') P(C')
= `1 - 2/3xx3/4 xx4/5`
= `1 - 2/5`
= `3/5`
APPEARS IN
संबंधित प्रश्न
Events A and B are such that `P(A) = 1/2, P(B) = 7/12 and P("not A or not B") = 1/4` . State whether A and B are independent?
Two events, A and B, will be independent if ______.
Prove that if E and F are independent events, then the events E and F' are also independent.
The probability that a 50-year old man will be alive till age 60 is 0.83 and the probability that a 45-year old woman will be alive till age 55 is 0.97. What is the probability that a man whose age is 50 and his wife whose age is 45 will both be alive after 10 years?
The odds against student X solving a business statistics problem are 8: 6 and odds in favour of student Y solving the same problem are 14: 16 What is the probability that neither solves the problem?
Two hundred patients who had either Eye surgery or Throat surgery were asked whether they were satisfied or unsatisfied regarding the result of their surgery.
The following table summarizes their response:
Surgery | Satisfied | Unsatisfied | Total |
Throat | 70 | 25 | 95 |
Eye | 90 | 15 | 105 |
Total | 160 | 40 | 200 |
If one person from the 200 patients is selected at random, determine the probability the person had Throat surgery given that the person was unsatisfied.
A bag contains 3 red and 5 white balls. Two balls are drawn at random one after the other without replacement. Find the probability that both the balls are white.
Solution: Let,
A : First ball drawn is white
B : second ball drawn in white.
P(A) = `square/square`
After drawing the first ball, without replacing it into the bag a second ball is drawn from the remaining `square` balls.
∴ P(B/A) = `square/square`
∴ P(Both balls are white) = P(A ∩ B)
`= "P"(square) * "P"(square)`
`= square * square`
= `square`
A family has two children. Find the probability that both the children are girls, given that atleast one of them is a girl.
Let A and B be two independent events. Then P(A ∩ B) = P(A) + P(B)
The probability that at least one of the two events A and B occurs is 0.6. If A and B occur simultaneously with probability 0.3, evaluate `"P"(bar"A") + "P"(bar"B")`
A and B are two events such that P(A) = `1/2`, P(B) = `1/3` and P(A ∩ B) = `1/4`. Find: `"P"("A'"/"B'")`
Three events A, B and C have probabilities `2/5, 1/3` and `1/2`, , respectively. Given that P(A ∩ C) = `1/5` and P(B ∩ C) = `1/4`, find the values of P(C|B) and P(A' ∩ C').
If A and B are such events that P(A) > 0 and P(B) ≠ 1, then P(A′|B′) equals ______.
If two events are independent, then ______.
Two independent events are always mutually exclusive.
If A and B are two events such that P(A|B) = p, P(A) = p, P(B) = `1/3` and P(A ∪ B) = `5/9`, then p = ______.
Let A and B be two events. If P(A | B) = P(A), then A is ______ of B.
Two cards are drawn at random and without replacement from a pack of 52 playing cards. Find the probability that both the cards are black.
Let A and B be independent events P(A) = 0.3 and P(B) = 0.4. Find P(A ∩ B)
Let EC denote the complement of an event E. Let E1, E2 and E3 be any pairwise independent events with P(E1) > 0 and P(E1 ∩ E2 ∩ E3) = 0. Then `"P"(("E"_2^"C" ∩ "E"_3^"C")/"E"_1)` is equal to ______.