हिंदी

Two independent events are always mutually exclusive. - Mathematics

Advertisements
Advertisements

प्रश्न

Two independent events are always mutually exclusive.

विकल्प

  • True

  • False

MCQ
सत्य या असत्य

उत्तर

This statement is False.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 13: Probability - Exercise [पृष्ठ २८५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 13 Probability
Exercise | Q 97 | पृष्ठ २८५

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

A card from a pack of 52 playing cards is lost. From the remaining cards of the pack three cards are drawn at random (without replacement) and are found to be all spades. Find the probability of the lost card being a spade.


If A and B are two independent events such that `P(barA∩ B) =2/15 and P(A ∩ barB) = 1/6`, then find P(A) and P(B).


Let E and F be events with `P(E) = 3/5, P(F) = 3/10 and P(E ∩ F) = 1/5`.  Are E and F independent?


Given two independent events A and B such that P (A) = 0.3, P (B) = 0.6. Find 

  1. P (A and B)
  2. P(A and not B)
  3. P(A or B)
  4. P(neither A nor B)

Prove that if E and F are independent events, then the events E and F' are also independent. 


The probabilities of solving a specific problem independently by A and B are `1/3` and `1/5` respectively. If both try to solve the problem independently, find the probability that the problem is solved.


One-shot is fired from each of the three guns. Let A, B, and C denote the events that the target is hit by the first, second and third guns respectively. assuming that A, B, and C are independent events and that P(A) = 0.5, P(B) = 0.6, and P(C) = 0.8, then find the probability that at least one hit is registered.


The probability that a student X solves a problem in dynamics is `2/5` and the probability that student Y solves the same problem is `1/4`. What is the probability that

  1. the problem is not solved
  2. the problem is solved
  3. the problem is solved exactly by one of them

Two hundred patients who had either Eye surgery or Throat surgery were asked whether they were satisfied or unsatisfied regarding the result of their surgery

The follwoing table summarizes their response:

Surgery Satisfied Unsatisfied Total
Throat 70 25 95
Eye 90 15 105
Total 160 40 200

If one person from the 200 patients is selected at random, determine the probability that person was unsatisfied given that the person had eye surgery


A bag contains 3 yellow and 5 brown balls. Another bag contains 4 yellow and 6 brown balls. If one ball is drawn from each bag, what is the probability that, both the balls are of the same color?


A family has two children. Find the probability that both the children are girls, given that atleast one of them is a girl.


Solve the following:

For three events A, B and C, we know that A and C are independent, B and C are independent, A and B are disjoint, P(A ∪ C) = `2/3`, P(B ∪ C) = `3/4`, P(A ∪ B ∪ C) = `11/12`. Find P(A), P(B) and P(C)


Solve the following:

A and B throw a die alternatively till one of them gets a 3 and wins the game. Find the respective probabilities of winning. (Assuming A begins the game)


If A and B are independent events such that 0 < P(A) < 1 and 0 < P(B) < 1, then which of the following is not correct?


Refer to Question 1 above. If the die were fair, determine whether or not the events A and B are independent.


A and B are two events such that P(A) = `1/2`, P(B) = `1/3` and P(A ∩ B) = `1/4`. Find: `"P"("B"/"A")`


A and B are two events such that P(A) = `1/2`, P(B) = `1/3` and P(A ∩ B) = `1/4`. Find: `"P"("A'"/"B'")`


Three events A, B and C have probabilities `2/5, 1/3` and `1/2`, , respectively. Given that P(A ∩ C) = `1/5` and P(B ∩ C) = `1/4`, find the values of P(C|B) and P(A' ∩ C').


A and B are events such that P(A) = 0.4, P(B) = 0.3 and P(A ∪ B) = 0.5. Then P(B′ ∩ A) equals ______.


If A and B are such events that P(A) > 0 and P(B) ≠ 1, then P(A′|B′) equals ______.


If A and B are two independent events with P(A) = `3/5` and P(B) = `4/9`, then P(A′ ∩ B′) equals ______.


Let A and B be two events such that P(A) = `3/8`, P(B) = `5/8` and P(A ∪ B) = `3/4`. Then P(A|B).P(A′|B) is equal to ______.


Two events E and F are independent. If P(E) = 0.3, P(E ∪ F) = 0.5, then P(E|F) – P(F|E) equals ______.


If A and B are independent events, then A′ and B′ are also independent


If A and B are two events such that P(A) > 0 and P(A) + P(B) >1, then P(B|A) ≥ `1 - ("P"("B'"))/("P"("A"))`


Let E1 and E2 be two independent events. Let P(E) denotes the probability of the occurrence of the event E. Further, let E'1 and E'2 denote the complements of E1 and E2, respectively. If P(E'1 ∩ E2) = `2/15` and P(E1 ∩ E'2) = `1/6`, then P(E1) is


Let EC denote the complement of an event E. Let E1, E2 and E3 be any pairwise independent events with P(E1) > 0 and P(E1 ∩ E2 ∩ E3) = 0. Then `"P"(("E"_2^"C"  ∩ "E"_3^"C")/"E"_1)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×