Advertisements
Advertisements
प्रश्न
If A and B are two events such that P(A) > 0 and P(A) + P(B) >1, then P(B|A) ≥ `1 - ("P"("B'"))/("P"("A"))`
विकल्प
True
False
उत्तर
This statement is False.
Explanation:
∵ P(B|A) = `("P"("A" ∩ "B"))/("P"("A"))`
= `("P"("A") + "P"("B") - "P"("A" ∪ "B"))/("P"("A")) > (1 - "P"("A" ∪ "B"))/("P"("A"))`
APPEARS IN
संबंधित प्रश्न
A card from a pack of 52 playing cards is lost. From the remaining cards of the pack three cards are drawn at random (without replacement) and are found to be all spades. Find the probability of the lost card being a spade.
If `P(A) = 3/5 and P(B) = 1/5` , find P (A ∩ B) if A and B are independent events.
Given two independent events A and B such that P (A) = 0.3, P (B) = 0.6. Find
- P (A and B)
- P(A and not B)
- P(A or B)
- P(neither A nor B)
One card is drawn at random from a well-shuffled deck of 52 cards. In which of the following case is the events E and F independent?
E : ‘the card drawn is a king or queen’
F : ‘the card drawn is a queen or jack’
Prove that if E and F are independent events, then the events E and F' are also independent.
A speaks the truth in 60% of the cases, while B is 40% of the cases. In what percent of cases are they likely to contradict each other in stating the same fact?
A fair die is rolled. If face 1 turns up, a ball is drawn from Bag A. If face 2 or 3 turns up, a ball is drawn from Bag B. If face 4 or 5 or 6 turns up, a ball is drawn from Bag C. Bag A contains 3 red and 2 white balls, Bag B contains 3 red and 4 white balls and Bag C contains 4 red and 5 white balls. The die is rolled, a Bag is picked up and a ball is drawn. If the drawn ball is red; what is the probability that it is drawn from Bag B?
Two hundred patients who had either Eye surgery or Throat surgery were asked whether they were satisfied or unsatisfied regarding the result of their surgery
The follwoing table summarizes their response:
Surgery | Satisfied | Unsatisfied | Total |
Throat | 70 | 25 | 95 |
Eye | 90 | 15 | 105 |
Total | 160 | 40 | 200 |
If one person from the 200 patients is selected at random, determine the probability that the person was satisfied given that the person had Throat surgery.
Two hundred patients who had either Eye surgery or Throat surgery were asked whether they were satisfied or unsatisfied regarding the result of their surgery.
The following table summarizes their response:
Surgery | Satisfied | Unsatisfied | Total |
Throat | 70 | 25 | 95 |
Eye | 90 | 15 | 105 |
Total | 160 | 40 | 200 |
If one person from the 200 patients is selected at random, determine the probability the person had Throat surgery given that the person was unsatisfied.
The probability that a man who is 45 years old will be alive till he becomes 70 is `5/12`. The probability that his wife who is 40 years old will be alive till she becomes 65 is `3/8`. What is the probability that, 25 years hence,
- the couple will be alive
- exactly one of them will be alive
- none of them will be alive
- at least one of them will be alive
A bag contains 3 yellow and 5 brown balls. Another bag contains 4 yellow and 6 brown balls. If one ball is drawn from each bag, what is the probability that, both the balls are of the same color?
Solve the following:
If P(A ∩ B) = `1/2`, P(B ∩ C) = `1/3`, P(C ∩ A) = `1/6` then find P(A), P(B) and P(C), If A,B,C are independent events.
Solve the following:
Let A and B be independent events with P(A) = `1/4`, and P(A ∪ B) = 2P(B) – P(A). Find `"P"("B'"/"A")`
Solve the following:
Consider independent trails consisting of rolling a pair of fair dice, over and over What is the probability that a sum of 5 appears before sum of 7?
The probability of simultaneous occurrence of at least one of two events A and B is p. If the probability that exactly one of A, B occurs is q, then prove that P(A′) + P(B′) = 2 – 2p + q.
Refer to Question 1 above. If the die were fair, determine whether or not the events A and B are independent.
Two dice are thrown together and the total score is noted. The events E, F and G are ‘a total of 4’, ‘a total of 9 or more’, and ‘a total divisible by 5’, respectively. Calculate P(E), P(F) and P(G) and decide which pairs of events, if any, are independent.
A and B are two events such that P(A) = `1/2`, P(B) = `1/3` and P(A ∩ B) = `1/4`. Find: `"P"("A"/"B")`
Three events A, B and C have probabilities `2/5, 1/3` and `1/2`, , respectively. Given that P(A ∩ C) = `1/5` and P(B ∩ C) = `1/4`, find the values of P(C|B) and P(A' ∩ C').
Two dice are tossed. Find whether the following two events A and B are independent: A = {(x, y): x + y = 11} B = {(x, y): x ≠ 5} where (x, y) denotes a typical sample point.
If A and B are two events such that P(A) = `1/2`, P(B) = `1/3` and P(A/B) = `1/4`, P(A' ∩ B') equals ______.
In Question 64 above, P(B|A′) is equal to ______.
If A and B are two independent events with P(A) = `3/5` and P(B) = `4/9`, then P(A′ ∩ B′) equals ______.
If the events A and B are independent, then P(A ∩ B) is equal to ______.
Let P(A) > 0 and P(B) > 0. Then A and B can be both mutually exclusive and independent.
If A and B are independent events, then A′ and B′ are also independent
One card is drawn at random from a well-shuffled deck of 52 cards. In which of the following case is the events E and F independent?
E : ‘the card drawn is a spade’
F : ‘the card drawn is an ace’
One card is drawn at random from a well-shuffled deck of 52 cards. In which of the following case is the events E and F independent?
E : ‘the card drawn is black’
F : ‘the card drawn is a king’
The probability of the event A occurring is `1/3` and of the event B occurring is `1/2`. If A and B are independent events, then find the probability of neither A nor B occurring.