Advertisements
Advertisements
प्रश्न
If A and B are two independent events with P(A) = `3/5` and P(B) = `4/9`, then P(A′ ∩ B′) equals ______.
विकल्प
`4/15`
`8/45`
`1/3`
`2/9`
उत्तर
If A and B are two independent events with P(A) = `3/5` and P(B) = `4/9`, then P(A′ ∩ B′) equals `2/9`.
Explanation:
Given that: A and B are independent events
Such that P(A) = `3/5`
∴ P(A') = `1 - 3/5 = 2/5`
P(B) = `4/9`
∴ P(B') = `1 - 4/9 = 5/9`
∴ P(A' ∩ B′) = P(A') . P(B')
= `2/5*5/9`
= `2/9`
APPEARS IN
संबंधित प्रश्न
A speaks truth in 60% of the cases, while B in 90% of the cases. In what percent of cases are they likely to contradict each other in stating the same fact? In the cases of contradiction do you think, the statement of B will carry more weight as he speaks truth in more number of cases than A?
If A and B are two independent events such that `P(barA∩ B) =2/15 and P(A ∩ barB) = 1/6`, then find P(A) and P(B).
Given two independent events A and B such that P (A) = 0.3, P (B) = 0.6. Find
- P (A and B)
- P(A and not B)
- P(A or B)
- P(neither A nor B)
In a race, the probabilities of A and B winning the race are `1/3` and `1/6` respectively. Find the probability of neither of them winning the race.
A problem in statistics is given to three students A, B, and C. Their chances of solving the problem are `1/3`, `1/4`, and `1/5` respectively. If all of them try independently, what is the probability that, problem is solved?
A problem in statistics is given to three students A, B, and C. Their chances of solving the problem are `1/3`, `1/4`, and `1/5` respectively. If all of them try independently, what is the probability that, exactly two students solve the problem?
A, B, and C try to hit a target simultaneously but independently. Their respective probabilities of hitting the target are `3/4, 1/2` and `5/8`. Find the probability that the target
- is hit exactly by one of them
- is not hit by any one of them
- is hit
- is exactly hit by two of them
Two dice are thrown together. Let A be the event 'getting 6 on the first die' and B be the event 'getting 2 on the second die'. Are the events A and B independent?
A bag contains 3 yellow and 5 brown balls. Another bag contains 4 yellow and 6 brown balls. If one ball is drawn from each bag, what is the probability that, the balls are of different color?
A family has two children. Find the probability that both the children are girls, given that atleast one of them is a girl.
Solve the following:
If P(A) = `"P"("A"/"B") = 1/5, "P"("B"/"A") = 1/3` the find `"P"("A'"/"B")`
Solve the following:
If P(A) = `"P"("A"/"B") = 1/5, "P"("B"/"A") = 1/3` the find `"P"("B'"/"A'")`
Solve the following:
For three events A, B and C, we know that A and C are independent, B and C are independent, A and B are disjoint, P(A ∪ C) = `2/3`, P(B ∪ C) = `3/4`, P(A ∪ B ∪ C) = `11/12`. Find P(A), P(B) and P(C)
Solve the following:
Consider independent trails consisting of rolling a pair of fair dice, over and over What is the probability that a sum of 5 appears before sum of 7?
If A and B are independent events such that 0 < P(A) < 1 and 0 < P(B) < 1, then which of the following is not correct?
Let A and B be two independent events. Then P(A ∩ B) = P(A) + P(B)
Three events A, B and C are said to be independent if P(A ∩ B ∩ C) = P(A) P(B) P(C).
For a loaded die, the probabilities of outcomes are given as under:
P(1) = P(2) = 0.2, P(3) = P(5) = P(6) = 0.1 and P(4) = 0.3. The die is thrown two times. Let A and B be the events, ‘same number each time’, and ‘a total score is 10 or more’, respectively. Determine whether or not A and B are independent.
Two dice are thrown together and the total score is noted. The events E, F and G are ‘a total of 4’, ‘a total of 9 or more’, and ‘a total divisible by 5’, respectively. Calculate P(E), P(F) and P(G) and decide which pairs of events, if any, are independent.
A and B are two events such that P(A) = `1/2`, P(B) = `1/3` and P(A ∩ B) = `1/4`. Find: `"P"("A'"/"B")`
A and B are two events such that P(A) = `1/2`, P(B) = `1/3` and P(A ∩ B) = `1/4`. Find: `"P"("A'"/"B'")`
If A and B are two events such that P(A) = `1/2`, P(B) = `1/3` and P(A/B) = `1/4`, P(A' ∩ B') equals ______.
A and B are events such that P(A) = 0.4, P(B) = 0.3 and P(A ∪ B) = 0.5. Then P(B′ ∩ A) equals ______.
If A and B are such events that P(A) > 0 and P(B) ≠ 1, then P(A′|B′) equals ______.
Let P(A) > 0 and P(B) > 0. Then A and B can be both mutually exclusive and independent.
If A and B′ are independent events, then P(A' ∪ B) = 1 – P (A) P(B')
If A, B are two events such that `1/8 ≤ P(A ∩ B) ≤ 3/8` then
Given two independent events A and B such that P(A) = 0.3, P(B) = 0.6 and P(A' ∩ B') is ______.
The probability that A hits the target is `1/3` and the probability that B hits it, is `2/5`. If both try to hit the target independently, find the probability that the target is hit.