Advertisements
Advertisements
प्रश्न
In a race, the probabilities of A and B winning the race are `1/3` and `1/6` respectively. Find the probability of neither of them winning the race.
उत्तर
Let A win the race be E1
B wins the race be E2
`P(E_1) = 1/3`, `P(E_2) = 1/6`
`P(E_1^' ∩ E_2^') = P(E_1^').P(E_2^')`
`= [1-P(E_+1)][1-P(E_2)]`
`= (1-1/3) (1-1/6)`
`= 2/3 xx 5/6 = 5/9`
APPEARS IN
संबंधित प्रश्न
If A and B are two independent events such that `P(barA∩ B) =2/15 and P(A ∩ barB) = 1/6`, then find P(A) and P(B).
If `P(A) = 3/5 and P(B) = 1/5` , find P (A ∩ B) if A and B are independent events.
Let E and F be events with `P(E) = 3/5, P(F) = 3/10 and P(E ∩ F) = 1/5`. Are E and F independent?
If A and B are two events such that `P(A) = 1/4, P(B) = 1/2 and P(A ∩ B) = 1/8`, find P (not A and not B).
Given two independent events A and B such that P (A) = 0.3, P (B) = 0.6. Find
- P (A and B)
- P(A and not B)
- P(A or B)
- P(neither A nor B)
If each element of a second order determinant is either zero or one, what is the probability that the value of the determinant is positive? (Assume that the individual entries of the determinant are chosen independently, each value being assumed with probability `1/2`).
The probabilities of solving a specific problem independently by A and B are `1/3` and `1/5` respectively. If both try to solve the problem independently, find the probability that the problem is solved.
A problem in statistics is given to three students A, B, and C. Their chances of solving the problem are `1/3`, `1/4`, and `1/5` respectively. If all of them try independently, what is the probability that, exactly two students solve the problem?
One-shot is fired from each of the three guns. Let A, B, and C denote the events that the target is hit by the first, second and third guns respectively. assuming that A, B, and C are independent events and that P(A) = 0.5, P(B) = 0.6, and P(C) = 0.8, then find the probability that at least one hit is registered.
An urn contains four tickets marked with numbers 112, 121, 122, 222 and one ticket is drawn at random. Let Ai (i = 1, 2, 3) be the event that ith digit of the number of the ticket drawn is 1. Discuss the independence of the events A1, A2, and A3.
The odds against student X solving a business statistics problem are 8: 6 and odds in favour of student Y solving the same problem are 14: 16 What is the chance that the problem will be solved, if they try independently?
The probability that a student X solves a problem in dynamics is `2/5` and the probability that student Y solves the same problem is `1/4`. What is the probability that
- the problem is not solved
- the problem is solved
- the problem is solved exactly by one of them
Select the correct option from the given alternatives :
The odds against an event are 5:3 and the odds in favour of another independent event are 7:5. The probability that at least one of the two events will occur is
Solve the following:
If P(A) = `"P"("A"/"B") = 1/5, "P"("B"/"A") = 1/3` the find `"P"("B'"/"A'")`
Solve the following:
Consider independent trails consisting of rolling a pair of fair dice, over and over What is the probability that a sum of 5 appears before sum of 7?
Let A and B be two independent events. Then P(A ∩ B) = P(A) + P(B)
Two dice are thrown together and the total score is noted. The events E, F and G are ‘a total of 4’, ‘a total of 9 or more’, and ‘a total divisible by 5’, respectively. Calculate P(E), P(F) and P(G) and decide which pairs of events, if any, are independent.
Let E1 and E2 be two independent events such that P(E1) = P1 and P(E2) = P2. Describe in words of the events whose probabilities are: (1 – P1) P2
A and B are events such that P(A) = 0.4, P(B) = 0.3 and P(A ∪ B) = 0.5. Then P(B′ ∩ A) equals ______.
If two events are independent, then ______.
If A and B are two events such that P(A) > 0 and P(A) + P(B) >1, then P(B|A) ≥ `1 - ("P"("B'"))/("P"("A"))`
If A and B are two events such that P(A|B) = p, P(A) = p, P(B) = `1/3` and P(A ∪ B) = `5/9`, then p = ______.
Let A and B be two events. If P(A | B) = P(A), then A is ______ of B.
If A, B are two events such that `1/8 ≤ P(A ∩ B) ≤ 3/8` then
If P(A) = `3/5` and P(B) = `1/5`, find P(A ∩ B), If A and B are independent events.
The probability that A hits the target is `1/3` and the probability that B hits it, is `2/5`. If both try to hit the target independently, find the probability that the target is hit.
Let EC denote the complement of an event E. Let E1, E2 and E3 be any pairwise independent events with P(E1) > 0 and P(E1 ∩ E2 ∩ E3) = 0. Then `"P"(("E"_2^"C" ∩ "E"_3^"C")/"E"_1)` is equal to ______.
Given two events A and B such that (A/B) = 0.25 and P(A ∩ B) = 0.12. The value P(A ∩ B') is ______.