हिंदी

The odds against student X solving a business statistics problem are 8: 6 and odds in favour of student Y solving the same problem are 14: 16 What is the chance that the problem will be solved - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

The odds against student X solving a business statistics problem are 8: 6 and odds in favour of student Y solving the same problem are 14: 16 What is the chance that the problem will be solved, if they try independently?

योग

उत्तर

Let A be the event that X solves the problem B be the event that Y solves the problem.
Since the odds against student X solving the problem are 8: 6
∴ Probability of occurrence of event A is given by.

P(A) = `6/(8 + 6) = 6/14` and

P(A') = 1 – P(A) = `1 - 6/14 = 8/14`

Also, the odds in favour of student Y solving the problem are 14: 16
∴ Probability of occurrence of event B is given by

P(B) = `14/(14 + 16) = 14/30` and

P(B') = 1 – P(B) = `1 - 14/30 = 16/30`

Now A and B are independent events.
∴ A' and B' are independent events.
A' ∩ B' = Event that neither solves the problem
= P(A' ∩ B') = P(A') · P(B')

= `8/14 xx 16/30`

= `32/105`
A ∪ B = the event that the problem is solved
∴ P (problem will be solved) = P(A ∪ B)
= 1 – P(A ∪ B)`
= 1 – P(A' ∩ B')

= `1 - 32/105`

= `73/105`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Probability - Miscellaneous Exercise 7 [पृष्ठ ११०]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Commerce) [English] 11 Standard Maharashtra State Board
अध्याय 7 Probability
Miscellaneous Exercise 7 | Q 14. (a) | पृष्ठ ११०

संबंधित प्रश्न

A fair coin and an unbiased die are tossed. Let A be the event ‘head appears on the coin’ and B be the event ‘3 on the die’. Check whether A and B are independent events or not.


Let A and B be independent events with P (A) = 0.3 and P (B) = 0.4. Find 

  1. P (A ∩ B)
  2. P (A ∪ B)
  3. P (A | B)
  4. P (B | A)

One card is drawn at random from a well-shuffled deck of 52 cards. In which of the following case is the events E and F independent?

E : ‘the card drawn is a king or queen’

F : ‘the card drawn is a queen or jack’


An urn contains four tickets marked with numbers 112, 121, 122, 222 and one ticket is drawn at random. Let Ai (i = 1, 2, 3) be the event that ith digit of the number of the ticket drawn is 1. Discuss the independence of the events A1, A2, and A3.


The odds against a husband who is 55 years old living till he is 75 is 8: 5 and it is 4: 3 against his wife who is now 48, living till she is 68. Find the probability that the couple will be alive 20 years hence.


The odds against a husband who is 55 years old living till he is 75 is 8: 5 and it is 4: 3 against his wife who is now 48, living till she is 68. Find the probability that at least one of them will be alive 20 years hence.


Solve the following:

Consider independent trails consisting of rolling a pair of fair dice, over and over What is the probability that a sum of 5 appears before sum of 7?


The probability that at least one of the two events A and B occurs is 0.6. If A and B occur simultaneously with probability 0.3, evaluate `"P"(bar"A") + "P"(bar"B")`


A and B are two events such that P(A) = `1/2`, P(B) = `1/3` and P(A ∩ B) = `1/4`. Find: `"P"("A"/"B")`


Let E1 and E2 be two independent events such that P(E1) = P1 and P(E2) = P2. Describe in words of the events whose probabilities are: P1P2 


Two dice are tossed. Find whether the following two events A and B are independent: A = {(x, y): x + y = 11} B = {(x, y): x ≠ 5} where (x, y) denotes a typical sample point.


If A and B are two events such that P(B) = `3/5`, P(A|B) = `1/2` and P(A ∪ B) = `4/5`, then P(A) equals ______.


If A and B are two independent events with P(A) = `3/5` and P(B) = `4/9`, then P(A′ ∩ B′) equals ______.


Two events E and F are independent. If P(E) = 0.3, P(E ∪ F) = 0.5, then P(E|F) – P(F|E) equals ______.


If A and B are mutually exclusive events, then they will be independent also.


If A and B are two events such that P(A) > 0 and P(A) + P(B) >1, then P(B|A) ≥ `1 - ("P"("B'"))/("P"("A"))`


If A, B are two events such that `1/8 ≤ P(A ∩ B) ≤ 3/8` then


Given two independent events, if the probability that exactly one of them occurs is `26/49` and the probability that none of them occurs is `15/49`, then the probability of more probable of the two events is ______.


A problem in Mathematics is given to three students whose chances of solving it are `1/2, 1/3, 1/4` respectively. If the events of their solving the problem are independent then the probability that the problem will be solved, is ______.


Given two events A and B such that (A/B) = 0.25 and P(A ∩ B) = 0.12. The value P(A ∩ B') is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×