Advertisements
Advertisements
प्रश्न
An urn contains four tickets marked with numbers 112, 121, 122, 222 and one ticket is drawn at random. Let Ai (i = 1, 2, 3) be the event that ith digit of the number of the ticket drawn is 1. Discuss the independence of the events A1, A2, and A3.
उत्तर
One ticket can be drawn out of 4 tickets in 4C1 = 4 ways.
∴ n(S) = 4
According to given information,
Let A1 be the event that 1st digit of the number of ticket is 1
A2 be the event that 2nd digit of the number of ticket is 1.
A3 be the event that 3rd digit of the number of ticket is 1.
∴ A1 = {112, 121, 122}, A2 = {112}, A3 = {121}
∴ `"P"("A"_1) = ("n"("A"_1))/("n"("S")) = 3/4`,
`"P"("A"_2) = ("n"("A"_2))/("n"("S")) = 1/4`,
`"P"("A"_3) = ("n"("A"_3))/("n"("S")) = 1/4`
`{:("P"("A"_1) "P"("A"_2) = 3/16),("P"("A"_2) "P"("A"_3) = 1/16),("P"("A"_1) "P"("A"_3) = 3/16):}}` ...(i)
A1 ∩ A2 = {112}, A2 ∩ A3 = Φ, A1 ∩ A3 = {121}
`{:("P"("A"_1 ∩ "A"_2) = ("n"("A"_1 ∩ "A"_2))/("n"("S")) = 1/4),("P"("A"_2 ∩ "A"_3) = 0),("P"("A"_1 ∩ "A"_3) = 1/4):}}` ...(ii)
∴ From (i) and (ii),
`{:("P"("A"_1)*"P"("A"_2) ≠ "P"("A"_1 ∩ "A"_2)),("P"("A"_2)*"P"("A"_3) ≠ "P"("A"_2 ∩ "A"_3)),("P"("A"_1)*"P"("A"_3) ≠ "P"("A"_1 ∩ "A"_3)):}}` ...(iii)
∴ A1, A2, A3 are not pairwise independent
For mutual independent of events A1, A2, A3 We require to have
P(A1 ∩ A2 ∩ A3) = P(A1) P(A2) P(A3)
and P(A1) P(A2) = P(A1 ∩ A2),
P(A2) P(A3) = P(A2 ∩ A3),
P(A1) P(A3) = P(A1 ∩ A3)
∴ From (iii),
A1, A2, A3 are not mutually independent.
APPEARS IN
संबंधित प्रश्न
A bag contains 4 balls. Two balls are drawn at random (without replacement) and are found to be white. What is the probability that all balls in the bag are white?
Given that the events A and B are such that `P(A) = 1/2, PA∪B=3/5 and P (B) = p`. Find p if they are
- mutually exclusive
- independent.
If A and B are two events such that `P(A) = 1/4, P(B) = 1/2 and P(A ∩ B) = 1/8`, find P (not A and not B).
Probability of solving specific problem independently by A and B are `1/2` and `1/3` respectively. If both try to solve the problem independently, find the probability that
- the problem is solved
- exactly one of them solves the problem.
One card is drawn at random from a well-shuffled deck of 52 cards. In which of the following case is the events E and F independent?
E : ‘the card drawn is a king or queen’
F : ‘the card drawn is a queen or jack’
If each element of a second order determinant is either zero or one, what is the probability that the value of the determinant is positive? (Assume that the individual entries of the determinant are chosen independently, each value being assumed with probability `1/2`).
A problem in statistics is given to three students A, B, and C. Their chances of solving the problem are `1/3`, `1/4`, and `1/5` respectively. If all of them try independently, what is the probability that, exactly two students solve the problem?
One-shot is fired from each of the three guns. Let A, B, and C denote the events that the target is hit by the first, second and third guns respectively. assuming that A, B, and C are independent events and that P(A) = 0.5, P(B) = 0.6, and P(C) = 0.8, then find the probability that at least one hit is registered.
A bag contains 3 red and 5 white balls. Two balls are drawn at random one after the other without replacement. Find the probability that both the balls are white.
Solution: Let,
A : First ball drawn is white
B : second ball drawn in white.
P(A) = `square/square`
After drawing the first ball, without replacing it into the bag a second ball is drawn from the remaining `square` balls.
∴ P(B/A) = `square/square`
∴ P(Both balls are white) = P(A ∩ B)
`= "P"(square) * "P"(square)`
`= square * square`
= `square`
Solve the following:
If P(A ∩ B) = `1/2`, P(B ∩ C) = `1/3`, P(C ∩ A) = `1/6` then find P(A), P(B) and P(C), If A,B,C are independent events.
Solve the following:
If P(A) = `"P"("A"/"B") = 1/5, "P"("B"/"A") = 1/3` the find `"P"("A'"/"B")`
Solve the following:
A and B throw a die alternatively till one of them gets a 3 and wins the game. Find the respective probabilities of winning. (Assuming A begins the game)
Let A and B be two events such that P(A) = `3/8`, P(B) = `5/8` and P(A ∪ B) = `3/4`. Then P(A|B).P(A′|B) is equal to ______.
Let P(A) > 0 and P(B) > 0. Then A and B can be both mutually exclusive and independent.
If A and B are two events such that P(A) > 0 and P(A) + P(B) >1, then P(B|A) ≥ `1 - ("P"("B'"))/("P"("A"))`
Let A and B be two events. If P(A | B) = P(A), then A is ______ of B.
If A, B are two events such that `1/8 ≤ P(A ∩ B) ≤ 3/8` then
The probability of obtaining an even prime number on each die when a pair of dice is rolled is
Let A and B be independent events P(A) = 0.3 and P(B) = 0.4. Find P(A ∩ B)
Given two events A and B such that (A/B) = 0.25 and P(A ∩ B) = 0.12. The value P(A ∩ B') is ______.