English

An urn contains four tickets marked with numbers 112, 121, 122, 222 and one ticket is drawn at random. Let Ai (i = 1, 2, 3) be the event that ith digit of the number of the ticket drawn is 1. - Mathematics and Statistics

Advertisements
Advertisements

Question

An urn contains four tickets marked with numbers 112, 121, 122, 222 and one ticket is drawn at random. Let Ai (i = 1, 2, 3) be the event that ith digit of the number of the ticket drawn is 1. Discuss the independence of the events A1, A2, and A3.

Sum

Solution

One ticket can be drawn out of 4 tickets in 4C1 = 4 ways.
∴ n(S) = 4
According to given information,
Let A1 be the event that 1st digit of the number of ticket is 1
A2 be the event that 2nd digit of the number of ticket is 1.
A3 be the event that 3rd digit of the number of ticket is 1.
∴ A1 = {112, 121, 122}, A2 = {112}, A3 = {121}

∴ `"P"("A"_1) = ("n"("A"_1))/("n"("S")) = 3/4`,

`"P"("A"_2) = ("n"("A"_2))/("n"("S")) = 1/4`,

`"P"("A"_3) = ("n"("A"_3))/("n"("S")) = 1/4`

`{:("P"("A"_1) "P"("A"_2) = 3/16),("P"("A"_2) "P"("A"_3) = 1/16),("P"("A"_1) "P"("A"_3) = 3/16):}}`   ...(i)

A1 ∩ A2 = {112}, A2 ∩ A3 = Φ, A1 ∩ A3 = {121}

`{:("P"("A"_1 ∩ "A"_2) = ("n"("A"_1 ∩ "A"_2))/("n"("S")) = 1/4),("P"("A"_2 ∩ "A"_3) = 0),("P"("A"_1 ∩ "A"_3) = 1/4):}}`   ...(ii)

∴ From (i) and (ii),
`{:("P"("A"_1)*"P"("A"_2) ≠ "P"("A"_1 ∩ "A"_2)),("P"("A"_2)*"P"("A"_3) ≠ "P"("A"_2 ∩ "A"_3)),("P"("A"_1)*"P"("A"_3) ≠ "P"("A"_1 ∩ "A"_3)):}}`   ...(iii)

∴ A1, A2, A3 are not pairwise independent
For mutual independent of events A1, A2, A3 We require to have
P(A1 ∩ A2 ∩ A3) = P(A1) P(A2) P(A3)
and P(A1) P(A2) = P(A1 ∩ A2),
P(A2) P(A3) = P(A2 ∩ A3),
P(A1) P(A3) = P(A1 ∩ A3)
∴ From (iii),
A1, A2, A3 are not mutually independent.

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Probability - Miscellaneous Exercise 7 [Page 110]

APPEARS IN

RELATED QUESTIONS

A card from a pack of 52 playing cards is lost. From the remaining cards of the pack three cards are drawn at random (without replacement) and are found to be all spades. Find the probability of the lost card being a spade.


A speaks truth in 60% of the cases, while B in 90% of the cases. In what percent of cases are they likely to contradict each other in stating the same fact? In the cases of contradiction do you think, the statement of B will carry more weight as he speaks truth in more number of cases than A?


One card is drawn at random from a well-shuffled deck of 52 cards. In which of the following case is the events E and F independent?

E : ‘the card drawn is a king or queen’

F : ‘the card drawn is a queen or jack’


Prove that if E and F are independent events, then the events E and F' are also independent. 


A speaks the truth in 60% of the cases, while B is 40% of the cases. In what percent of cases are they likely to contradict each other in stating the same fact?


The odds against a husband who is 55 years old living till he is 75 is 8: 5 and it is 4: 3 against his wife who is now 48, living till she is 68. Find the probability that the couple will be alive 20 years hence.


The probability that a student X solves a problem in dynamics is `2/5` and the probability that student Y solves the same problem is `1/4`. What is the probability that

  1. the problem is not solved
  2. the problem is solved
  3. the problem is solved exactly by one of them

A bag contains 3 yellow and 5 brown balls. Another bag contains 4 yellow and 6 brown balls. If one ball is drawn from each bag, what is the probability that, both the balls are of the same color?


A bag contains 3 yellow and 5 brown balls. Another bag contains 4 yellow and 6 brown balls. If one ball is drawn from each bag, what is the probability that, the balls are of different color?


Solve the following:

A and B throw a die alternatively till one of them gets a 3 and wins the game. Find the respective probabilities of winning. (Assuming A begins the game)


Three events A, B and C are said to be independent if P(A ∩ B ∩ C) = P(A) P(B) P(C).


Let E1 and E2 be two independent events such that P(E1) = P1 and P(E2) = P2. Describe in words of the events whose probabilities are: P1 + P2 – 2P1P2 


If A and B are such events that P(A) > 0 and P(B) ≠ 1, then P(A′|B′) equals ______.


Let A and B be two events such that P(A) = `3/8`, P(B) = `5/8` and P(A ∪ B) = `3/4`. Then P(A|B).P(A′|B) is equal to ______.


If A and B are two events such that P(A|B) = p, P(A) = p, P(B) = `1/3` and P(A ∪ B) = `5/9`, then p = ______.


One card is drawn at random from a well-shuffled deck of 52 cards. In which of the following case is the events E and F independent?

E : ‘the card drawn is black’

F : ‘the card drawn is a king’


If P(A) = `3/5` and P(B) = `1/5`, find P(A ∩ B), If A and B are independent events.


A problem in Mathematics is given to three students whose chances of solving it are `1/2, 1/3, 1/4` respectively. If the events of their solving the problem are independent then the probability that the problem will be solved, is ______.


Given two events A and B such that (A/B) = 0.25 and P(A ∩ B) = 0.12. The value P(A ∩ B') is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×