English

The probability that a student X solves a problem in dynamics is 25 and the probability that student Y solves the same problem is 14 . What is the probability that the problem is not solved - Mathematics and Statistics

Advertisements
Advertisements

Question

The probability that a student X solves a problem in dynamics is `2/5` and the probability that student Y solves the same problem is `1/4`. What is the probability that

  1. the problem is not solved
  2. the problem is solved
  3. the problem is solved exactly by one of them
Sum

Solution

Let event A: Student X solves the problem in dynamics,

event B: Student Y solves the problem in dynamics.

∴ P(A) = `2/5`, P(B) = `1/4`

∴ P(A') = 1 – P(A) = `1 - 2/5 = 3/5`

P(B') = 1 – P(B) = `1 - 1/4 = 3/4`

A and B are independent events,

A' and B' are also independent events

(i) Let event C: Problem is not solved.

∴ P(C) = P(A' ∩ B')

= P(A') · P(B')

= `3/5 xx 3/4`

= `9/20`

(ii) Let event D: Problem is solved.

Problem can be solved if at least one of the two students solves the problem.

∴ P(C) = P(at least one student solves the problem)

= 1 - P (no student solves the problem)

= 1 - P(A' ∩ B')

= 1 - P (A') · P (B')

`= 1 - 3/5 xx 3/4`

`= 1 - 9/20`

`= 11/20`

(iii) Let event E: The problem is solved exactly by one of them.

∴ P(E) = P(A' ∩ B) ∪ P(A ∩ B')

= P(A') · P (B) + · P (A) · P (B')

`= (3/5 xx 1/4) + (2/5 xx 3/4)`

`= 3/20 + 6/20`

`= 9/20`

shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Probability - Exercise 9.3 [Page 206]

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Let E and F be events with `P(E) = 3/5, P(F) = 3/10 and P(E ∩ F) = 1/5`.  Are E and F independent?


If A and B are two events such that `P(A) = 1/4, P(B) = 1/2 and P(A ∩ B) = 1/8`, find P (not A and not B).


One card is drawn at random from a well-shuffled deck of 52 cards. In which of the following case is the events E and F independent?

E : ‘the card drawn is a king or queen’

F : ‘the card drawn is a queen or jack’


Two events, A and B, will be independent if ______.


If each element of a second order determinant is either zero or one, what is the probability that the value of the determinant is positive? (Assume that the individual entries of the determinant are chosen independently, each value being assumed with probability `1/2`).


A problem in statistics is given to three students A, B, and C. Their chances of solving the problem are `1/3`, `1/4`, and `1/5` respectively. If all of them try independently, what is the probability that, problem is solved?


A problem in statistics is given to three students A, B, and C. Their chances of solving the problem are `1/3`, `1/4`, and `1/5` respectively. If all of them try independently, what is the probability that, problem is not solved


The probability that a 50-year old man will be alive till age 60 is 0.83 and the probability that a 45-year old woman will be alive till age 55 is 0.97. What is the probability that a man whose age is 50 and his wife whose age is 45 will both be alive after 10 years?


The odds against student X solving a business statistics problem are 8: 6 and odds in favour of student Y solving the same problem are 14: 16 What is the chance that the problem will be solved, if they try independently?


A bag contains 3 yellow and 5 brown balls. Another bag contains 4 yellow and 6 brown balls. If one ball is drawn from each bag, what is the probability that, both the balls are of the same color?


A bag contains 3 yellow and 5 brown balls. Another bag contains 4 yellow and 6 brown balls. If one ball is drawn from each bag, what is the probability that, the balls are of different color?


A family has two children. Find the probability that both the children are girls, given that atleast one of them is a girl.


Solve the following:

If P(A) = `"P"("A"/"B") = 1/5, "P"("B"/"A") = 1/3` the find `"P"("A'"/"B")`


Solve the following:

Let A and B be independent events with P(A) = `1/4`, and P(A ∪ B) = 2P(B) – P(A). Find `"P"("B'"/"A")`


Solve the following:

Find the probability that a year selected will have 53 Wednesdays


Solve the following:

For three events A, B and C, we know that A and C are independent, B and C are independent, A and B are disjoint, P(A ∪ C) = `2/3`, P(B ∪ C) = `3/4`, P(A ∪ B ∪ C) = `11/12`. Find P(A), P(B) and P(C)


Solve the following:

A and B throw a die alternatively till one of them gets a 3 and wins the game. Find the respective probabilities of winning. (Assuming A begins the game)


10% of the bulbs produced in a factory are of red colour and 2% are red and defective. If one bulb is picked up at random, determine the probability of its being defective if it is red.


Two dice are thrown together. Let A be the event ‘getting 6 on the first die’ and B be the event ‘getting 2 on the second die’. Are the events A and B independent?


If A and B′ are independent events then P(A′ ∪ B) = 1 – ______.


A and B are two events such that P(A) = `1/2`, P(B) = `1/3` and P(A ∩ B) = `1/4`. Find: `"P"("B"/"A")`


A and B are two events such that P(A) = `1/2`, P(B) = `1/3` and P(A ∩ B) = `1/4`. Find: `"P"("A'"/"B'")`


Three events A, B and C have probabilities `2/5, 1/3` and `1/2`, , respectively. Given that P(A ∩ C) = `1/5` and P(B ∩ C) = `1/4`, find the values of P(C|B) and P(A' ∩ C').


Let E1 and E2 be two independent events such that P(E1) = P1 and P(E2) = P2. Describe in words of the events whose probabilities are: P1P2 


Let E1 and E2 be two independent events such that P(E1) = P1 and P(E2) = P2. Describe in words of the events whose probabilities are: 1 – (1 – P1)(1 – P2


Two dice are tossed. Find whether the following two events A and B are independent: A = {(x, y): x + y = 11} B = {(x, y): x ≠ 5} where (x, y) denotes a typical sample point.


If A and B are two events such that P(A) = `1/2`, P(B) = `1/3` and P(A/B) = `1/4`, P(A' ∩ B') equals ______.


If A and B are two events and A ≠ Φ, B ≠ Φ, then ______.


A and B are events such that P(A) = 0.4, P(B) = 0.3 and P(A ∪ B) = 0.5. Then P(B′ ∩ A) equals ______.


If A and B are two events such that P(B) = `3/5`, P(A|B) = `1/2` and P(A ∪ B) = `4/5`, then P(A) equals ______.


If A and B are such events that P(A) > 0 and P(B) ≠ 1, then P(A′|B′) equals ______.


If two events are independent, then ______.


Two independent events are always mutually exclusive.


If P(A) = `3/5` and P(B) = `1/5`, find P(A ∩ B), If A and B are independent events.


Let A and B be independent events P(A) = 0.3 and P(B) = 0.4. Find P(A ∩ B)


Given two independent events A and B such that P(A) = 0.3, P(B) = 0.6 and P(A' ∩ B') is ______.


Let EC denote the complement of an event E. Let E1, E2 and E3 be any pairwise independent events with P(E1) > 0 and P(E1 ∩ E2 ∩ E3) = 0. Then `"P"(("E"_2^"C"  ∩ "E"_3^"C")/"E"_1)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×