Advertisements
Advertisements
Question
A and B are two events such that P(A) = `1/2`, P(B) = `1/3` and P(A ∩ B) = `1/4`. Find: `"P"("A'"/"B'")`
Solution
We have P(A) = `1/2`
P(B) = `1/3`
And P(A ∩ B) = `1/4`
P(A') = `1 - 1/2 = 1/2`
P(B') = `1 - 1/3 = 2/3`
P(A' ∩ B') = 1 – P(A ∪ B)
= 1 – [P(A) + P(B) – P(A ∩ B)]
= `1 - [1/2 + 1/3 - 1/4]`
= `1 - [(6 + 4 + 3)/12]`
= `1 - 7/12`
= `5/12`
`"P"("A'"/"B'") = ("P"("A'" ∩ "B'"))/("P"("B'")`
= `(5/12)/(2/3)`
= `5/12 xx 3/12`
= `5/8`
APPEARS IN
RELATED QUESTIONS
A speaks truth in 60% of the cases, while B in 90% of the cases. In what percent of cases are they likely to contradict each other in stating the same fact? In the cases of contradiction do you think, the statement of B will carry more weight as he speaks truth in more number of cases than A?
A bag contains 4 balls. Two balls are drawn at random (without replacement) and are found to be white. What is the probability that all balls in the bag are white?
Let A and B be independent events with P (A) = 0.3 and P (B) = 0.4. Find
- P (A ∩ B)
- P (A ∪ B)
- P (A | B)
- P (B | A)
If each element of a second order determinant is either zero or one, what is the probability that the value of the determinant is positive? (Assume that the individual entries of the determinant are chosen independently, each value being assumed with probability `1/2`).
In a race, the probabilities of A and B winning the race are `1/3` and `1/6` respectively. Find the probability of neither of them winning the race.
If P(A) = 0·4, P(B) = p, P(A ⋃ B) = 0·6 and A and B are given to be independent events, find the value of 'p'.
A problem in statistics is given to three students A, B, and C. Their chances of solving the problem are `1/3`, `1/4`, and `1/5` respectively. If all of them try independently, what is the probability that, problem is solved?
The odds against a husband who is 55 years old living till he is 75 is 8: 5 and it is 4: 3 against his wife who is now 48, living till she is 68. Find the probability that at least one of them will be alive 20 years hence.
The probability that a student X solves a problem in dynamics is `2/5` and the probability that student Y solves the same problem is `1/4`. What is the probability that
- the problem is not solved
- the problem is solved
- the problem is solved exactly by one of them
The probability that a man who is 45 years old will be alive till he becomes 70 is `5/12`. The probability that his wife who is 40 years old will be alive till she becomes 65 is `3/8`. What is the probability that, 25 years hence,
- the couple will be alive
- exactly one of them will be alive
- none of them will be alive
- at least one of them will be alive
A bag contains 3 yellow and 5 brown balls. Another bag contains 4 yellow and 6 brown balls. If one ball is drawn from each bag, what is the probability that, both the balls are of the same color?
A bag contains 3 yellow and 5 brown balls. Another bag contains 4 yellow and 6 brown balls. If one ball is drawn from each bag, what is the probability that, the balls are of different color?
Solve the following:
Let A and B be independent events with P(A) = `1/4`, and P(A ∪ B) = 2P(B) – P(A). Find P(B)
Solve the following:
Find the probability that a year selected will have 53 Wednesdays
Solve the following:
Consider independent trails consisting of rolling a pair of fair dice, over and over What is the probability that a sum of 5 appears before sum of 7?
Solve the following:
A machine produces parts that are either good (90%), slightly defective (2%), or obviously defective (8%). Produced parts get passed through an automatic inspection machine, which is able to detect any part that is obviously defective and discard it. What is the quality of the parts that make it throught the inspection machine and get shipped?
Two dice are thrown together. Let A be the event ‘getting 6 on the first die’ and B be the event ‘getting 2 on the second die’. Are the events A and B independent?
Three events A, B and C are said to be independent if P(A ∩ B ∩ C) = P(A) P(B) P(C).
Two dice are tossed. Find whether the following two events A and B are independent: A = {(x, y): x + y = 11} B = {(x, y): x ≠ 5} where (x, y) denotes a typical sample point.
If A and B are two independent events with P(A) = `3/5` and P(B) = `4/9`, then P(A′ ∩ B′) equals ______.
If two events are independent, then ______.
Let A and B be two events such that P(A) = `3/8`, P(B) = `5/8` and P(A ∪ B) = `3/4`. Then P(A|B).P(A′|B) is equal to ______.
Let P(A) > 0 and P(B) > 0. Then A and B can be both mutually exclusive and independent.
If A and B are two independent events then P(A and B) = P(A).P(B).
The probability of obtaining an even prime number on each die when a pair of dice is rolled is
If P(A) = `3/5` and P(B) = `1/5`, find P(A ∩ B), If A and B are independent events.
Given two independent events A and B such that P(A) = 0.3, P(B) = 0.6 and P(A' ∩ B') is ______.
Let EC denote the complement of an event E. Let E1, E2 and E3 be any pairwise independent events with P(E1) > 0 and P(E1 ∩ E2 ∩ E3) = 0. Then `"P"(("E"_2^"C" ∩ "E"_3^"C")/"E"_1)` is equal to ______.
The probability of the event A occurring is `1/3` and of the event B occurring is `1/2`. If A and B are independent events, then find the probability of neither A nor B occurring.