English

The probability of the event A occurring is 13 and of the event B occurring is 12. If A and B are independent events, then find the probability of neither A nor B occurring. - Mathematics

Advertisements
Advertisements

Question

The probability of the event A occurring is `1/3` and of the event B occurring is `1/2`. If A and B are independent events, then find the probability of neither A nor B occurring.

Sum

Solution

Given P(A) = `1/3` and P(B) = `1/2`

∵ A and B are independent events.

So `bar"A"` and `bar"B"` are also independent events.

∴ Required probability

`"P"(bar"A" ∩ bar"B") = "P"(bar"A")xx"P"(bar"B")`

= `(1 - 1/3)xx(1 - 1/2)`

= `2/3 xx 1/2`

= `1/3`

shaalaa.com
  Is there an error in this question or solution?
2022-2023 (March) Official

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

A card from a pack of 52 playing cards is lost. From the remaining cards of the pack three cards are drawn at random (without replacement) and are found to be all spades. Find the probability of the lost card being a spade.


A fair coin and an unbiased die are tossed. Let A be the event ‘head appears on the coin’ and B be the event ‘3 on the die’. Check whether A and B are independent events or not.


Given that the events A and B are such that `P(A) = 1/2, PA∪B=3/5 and P (B) = p`. Find p if they are

  1. mutually exclusive
  2. independent.

If A and B are two events such that `P(A) = 1/4, P(B) = 1/2 and P(A ∩ B) = 1/8`, find P (not A and not B).


Given two independent events A and B such that P (A) = 0.3, P (B) = 0.6. Find 

  1. P (A and B)
  2. P(A and not B)
  3. P(A or B)
  4. P(neither A nor B)

Probability of solving specific problem independently by A and B are `1/2` and `1/3` respectively. If both try to solve the problem independently, find the probability that

  1. the problem is solved
  2. exactly one of them solves the problem.

Prove that if E and F are independent events, then the events E and F' are also independent. 


If P(A) = 0·4, P(B) = p, P(A ⋃ B) = 0·6 and A and B are given to be independent events, find the value of 'p'.


A problem in statistics is given to three students A, B, and C. Their chances of solving the problem are `1/3`, `1/4`, and `1/5` respectively. If all of them try independently, what is the probability that, problem is not solved


The probability that a 50-year old man will be alive till age 60 is 0.83 and the probability that a 45-year old woman will be alive till age 55 is 0.97. What is the probability that a man whose age is 50 and his wife whose age is 45 will both be alive after 10 years?


The odds against a husband who is 55 years old living till he is 75 is 8: 5 and it is 4: 3 against his wife who is now 48, living till she is 68. Find the probability that at least one of them will be alive 20 years hence.


The probability that a student X solves a problem in dynamics is `2/5` and the probability that student Y solves the same problem is `1/4`. What is the probability that

  1. the problem is not solved
  2. the problem is solved
  3. the problem is solved exactly by one of them

A family has two children. Find the probability that both the children are girls, given that atleast one of them is a girl.


Solve the following:

Let A and B be independent events with P(A) = `1/4`, and P(A ∪ B) = 2P(B) – P(A). Find P(B)


Two dice are thrown together. Let A be the event ‘getting 6 on the first die’ and B be the event ‘getting 2 on the second die’. Are the events A and B independent?


Three events A, B and C are said to be independent if P(A ∩ B ∩ C) = P(A) P(B) P(C).


The probability that at least one of the two events A and B occurs is 0.6. If A and B occur simultaneously with probability 0.3, evaluate `"P"(bar"A") + "P"(bar"B")`


Two dice are thrown together and the total score is noted. The events E, F and G are ‘a total of 4’, ‘a total of 9 or more’, and ‘a total divisible by 5’, respectively. Calculate P(E), P(F) and P(G) and decide which pairs of events, if any, are independent.


A and B are two events such that P(A) = `1/2`, P(B) = `1/3` and P(A ∩ B) = `1/4`. Find: `"P"("A'"/"B")`


If A and B are two events such that P(B) = `3/5`, P(A|B) = `1/2` and P(A ∪ B) = `4/5`, then P(A) equals ______.


If A and B are such events that P(A) > 0 and P(B) ≠ 1, then P(A′|B′) equals ______.


Let P(A) > 0 and P(B) > 0. Then A and B can be both mutually exclusive and independent.


If A and B′ are independent events, then P(A' ∪ B) = 1 – P (A) P(B')


If A and B are two events such that P(A) > 0 and P(A) + P(B) >1, then P(B|A) ≥ `1 - ("P"("B'"))/("P"("A"))`


One card is drawn at random from a well-shuffled deck of 52 cards. In which of the following case is the events E and F independent?

E : ‘the card drawn is a spade’

F : ‘the card drawn is an ace’


If A, B are two events such that `1/8 ≤ P(A ∩ B) ≤ 3/8` then


Two cards are drawn at random and without replacement from a pack of 52 playing cards. Find the probability that both the cards are black.


Events A and Bare such that P(A) = `1/2`, P(B) = `7/12` and `P(barA ∪ barB) = 1/4`. Find whether the events A and B are independent or not.


Let EC denote the complement of an event E. Let E1, E2 and E3 be any pairwise independent events with P(E1) > 0 and P(E1 ∩ E2 ∩ E3) = 0. Then `"P"(("E"_2^"C"  ∩ "E"_3^"C")/"E"_1)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×