English

If A and B are two events such that andP(A)=14,P(B)=12andP(A∩B)=18, find P (not A and not B). - Mathematics

Advertisements
Advertisements

Question

If A and B are two events such that `P(A) = 1/4, P(B) = 1/2 and P(A ∩ B) = 1/8`, find P (not A and not B).

Sum

Solution

As `P (A cap B) = 1/8 = 1/4 xx 1/2 = P (A) xx P (B)`

⇒ A and B are independent.

⇒ Ac and Bc are also independent.

⇒ P (Ac ∩ Bc) = P (Ac) P (Bc)

⇒ P (Ac ∩ Bc) = (1 - P(A)) (1 - P (B))

`= (1 - 1/4) (1 - 1/2) = 3/4 xx 1/2 = 3/8`

(∴ P (Ac) = 1 - P (A) & P(Bc) = 1 - P (B))

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Probability - Exercise 13.2 [Page 547]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 13 Probability
Exercise 13.2 | Q 9 | Page 547

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

A die, whose faces are marked 1, 2, 3 in red and 4, 5, 6 in green is tossed. Let A be the event "number obtained is even" and B be the event "number obtained is red". Find if A and B are independent events.


If `P(A)  = 3/5 and P(B) = 1/5` , find P (A ∩ B) if A and B are independent events.


A fair coin and an unbiased die are tossed. Let A be the event ‘head appears on the coin’ and B be the event ‘3 on the die’. Check whether A and B are independent events or not.


One card is drawn at random from a well-shuffled deck of 52 cards. In which of the following case is the events E and F independent?

E : ‘the card drawn is a king or queen’

F : ‘the card drawn is a queen or jack’


Two events, A and B, will be independent if ______.


Prove that if E and F are independent events, then the events E and F' are also independent. 


In a race, the probabilities of A and B winning the race are `1/3` and `1/6` respectively. Find the probability of neither of them winning the race.


A fair die is rolled. If face 1 turns up, a ball is drawn from Bag A. If face 2 or 3 turns up, a ball is drawn from Bag B. If face 4 or 5 or 6 turns up, a ball is drawn from Bag C. Bag A contains 3 red and 2 white balls, Bag B contains 3 red and 4 white balls and Bag C contains 4 red and 5 white balls. The die is rolled, a Bag is picked up and a ball is drawn. If the drawn ball is red; what is the probability that it is drawn from Bag B?


A problem in statistics is given to three students A, B, and C. Their chances of solving the problem are `1/3`, `1/4`, and `1/5` respectively. If all of them try independently, what is the probability that, problem is not solved


One-shot is fired from each of the three guns. Let A, B, and C denote the events that the target is hit by the first, second and third guns respectively. assuming that A, B, and C are independent events and that P(A) = 0.5, P(B) = 0.6, and P(C) = 0.8, then find the probability that at least one hit is registered.


A, B, and C try to hit a target simultaneously but independently. Their respective probabilities of hitting the target are `3/4, 1/2` and `5/8`. Find the probability that the target

  1. is hit exactly by one of them
  2. is not hit by any one of them
  3. is hit
  4. is exactly hit by two of them

Two hundred patients who had either Eye surgery or Throat surgery were asked whether they were satisfied or unsatisfied regarding the result of their surgery

The follwoing table summarizes their response:

Surgery Satisfied Unsatisfied Total
Throat 70 25 95
Eye 90 15 105
Total 160 40 200

If one person from the 200 patients is selected at random, determine the probability that the person was satisfied given that the person had Throat surgery.


Solve the following:

If P(A) = `"P"("A"/"B") = 1/5, "P"("B"/"A") = 1/3` the find `"P"("B'"/"A'")`


Solve the following:

Let A and B be independent events with P(A) = `1/4`, and P(A ∪ B) = 2P(B) – P(A). Find P(B)


Solve the following:

Let A and B be independent events with P(A) = `1/4`, and P(A ∪ B) = 2P(B) – P(A). Find `"P"("A"/"B")`


Solve the following:

Let A and B be independent events with P(A) = `1/4`, and P(A ∪ B) = 2P(B) – P(A). Find `"P"("B'"/"A")`


Solve the following:

Consider independent trails consisting of rolling a pair of fair dice, over and over What is the probability that a sum of 5 appears before sum of 7?


For a loaded die, the probabilities of outcomes are given as under:
P(1) = P(2) = 0.2, P(3) = P(5) = P(6) = 0.1 and P(4) = 0.3. The die is thrown two times. Let A and B be the events, ‘same number each time’, and ‘a total score is 10 or more’, respectively. Determine whether or not A and B are independent.


A and B are two events such that P(A) = `1/2`, P(B) = `1/3` and P(A ∩ B) = `1/4`. Find: `"P"("A"/"B")`


Let E1 and E2 be two independent events such that P(E1) = P1 and P(E2) = P2. Describe in words of the events whose probabilities are: 1 – (1 – P1)(1 – P2


A and B are events such that P(A) = 0.4, P(B) = 0.3 and P(A ∪ B) = 0.5. Then P(B′ ∩ A) equals ______.


If A and B are such events that P(A) > 0 and P(B) ≠ 1, then P(A′|B′) equals ______.


If two events are independent, then ______.


Let P(A) > 0 and P(B) > 0. Then A and B can be both mutually exclusive and independent.


If A and B are independent events, then A′ and B′ are also independent


If A and B are mutually exclusive events, then they will be independent also.


If A and B are two events such that P(A) > 0 and P(A) + P(B) >1, then P(B|A) ≥ `1 - ("P"("B'"))/("P"("A"))`


One card is drawn at random from a well-shuffled deck of 52 cards. In which of the following case is the events E and F independent?

E : ‘the card drawn is black’

F : ‘the card drawn is a king’


The probability of obtaining an even prime number on each die when a pair of dice is rolled is


Two events 'A' and 'B' are said to be independent if


Two cards are drawn at random and without replacement from a pack of 52 playing cards. Find the probability that both the cards are black.


Given two independent events A and B such that P(A) = 0.3, P(B) = 0.6 and P(A' ∩ B') is ______.


Events A and Bare such that P(A) = `1/2`, P(B) = `7/12` and `P(barA ∪ barB) = 1/4`. Find whether the events A and B are independent or not.


The probability that A hits the target is `1/3` and the probability that B hits it, is `2/5`. If both try to hit the target independently, find the probability that the target is hit.


Let Bi(i = 1, 2, 3) be three independent events in a sample space. The probability that only B1 occur is α, only B2 occurs is β and only B3 occurs is γ. Let p be the probability that none of the events Bi occurs and these 4 probabilities satisfy the equations (α – 2β)p = αβ and (β – 3γ) = 2βy (All the probabilities are assumed to lie in the interval (0, 1)). Then `("P"("B"_1))/("P"("B"_3))` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×