English

For a loaded die, the probabilities of outcomes are given as under:P(1) = P(2) = 0.2, P(3) = P(5) = P(6) = 0.1 and P(4) = 0.3. The die is thrown two times. Let A and B be the events, ‘same number eac - Mathematics

Advertisements
Advertisements

Question

For a loaded die, the probabilities of outcomes are given as under:
P(1) = P(2) = 0.2, P(3) = P(5) = P(6) = 0.1 and P(4) = 0.3. The die is thrown two times. Let A and B be the events, ‘same number each time’, and ‘a total score is 10 or more’, respectively. Determine whether or not A and B are independent.

Sum

Solution

A loaded die is thrown such that P(1) = P(2) = 0.2, P(3) = P(5) = P(6) = 0.1 and P(4) = 0.3 and die is thrown two times.

Also given that: A = Same number each time and

B = Total score is 10 or more.

So, P(A) = [P(1, 1) + P(2, 2) + P(3, 3) + P(4, 4) + P(5, 5) + P(6, 6)]

= P(1).P(1) + P(2).P(2) + P(3).P(3) + P(4).P(4) + P(5).P(5) + P(6).P(6)

0.2 × 0.2 + 0.2 × 0.2 + 0.1 × 0.1 + 0.3 × 0.3 + 0.1 × 0.1 + 0.1 × 0.1

= 0.04 + 0.04 + 0.01 + 0.09 + 0.01 + 0.01 = 0.20

Now B = [(4, 6), (6, 4), (5, 5), (5, 6), (6, 5), (6, 6)]

P(B) = [P(4).P(6) + P(6).P(4) + P(5).P(5) + P(5).P(6) + P(6).P(5) + P(6).P(6)

= 0.3 × 0.1 + 0.1 × 0.3 + 0.1 × 0.1 + 0.1 × 0.1 + 0.1 × 0.1 + 0.1 × 0.1

= 0.03 + 0.03 + 0.01 + 0.01 + 0.01 + 0.01 = 0.10

A and B both events will be independent if

P(A ∩ B) = P(A).P(B)   ......(i)

Here, (A ∩ B) = {(5, 5), (6, 6)}

∴ P(A ∩ B) = P(5, 5) + P(6, 6) = P(5).P(5) + P(6).P(6)

= 0.1 × 0.1 + 0.1 × 0.1

= 0.02

From equation (i) we get

0.02 = 0.20 × 0.10

0.02 = 0.02

Hence, A and B are independent events.

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Probability - Exercise [Page 271]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 13 Probability
Exercise | Q 1 | Page 271

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

If A and B are two independent events such that `P(barA∩ B) =2/15 and P(A ∩ barB) = 1/6`, then find P(A) and P(B).


A fair coin and an unbiased die are tossed. Let A be the event ‘head appears on the coin’ and B be the event ‘3 on the die’. Check whether A and B are independent events or not.


Given two independent events A and B such that P (A) = 0.3, P (B) = 0.6. Find 

  1. P (A and B)
  2. P(A and not B)
  3. P(A or B)
  4. P(neither A nor B)

An urn contains four tickets marked with numbers 112, 121, 122, 222 and one ticket is drawn at random. Let Ai (i = 1, 2, 3) be the event that ith digit of the number of the ticket drawn is 1. Discuss the independence of the events A1, A2, and A3.


The odds against student X solving a business statistics problem are 8: 6 and odds in favour of student Y solving the same problem are 14: 16 What is the probability that neither solves the problem?


Two dice are thrown together. Let A be the event 'getting 6 on the first die' and B be the event 'getting 2 on the second die'. Are the events A and B independent?


A bag contains 3 yellow and 5 brown balls. Another bag contains 4 yellow and 6 brown balls. If one ball is drawn from each bag, what is the probability that, both the balls are of the same color?


Solve the following:

If P(A ∩ B) = `1/2`, P(B ∩ C) = `1/3`, P(C ∩ A) = `1/6` then find P(A), P(B) and P(C), If A,B,C are independent events.


Solve the following:

Find the probability that a year selected will have 53 Wednesdays


Solve the following:

For three events A, B and C, we know that A and C are independent, B and C are independent, A and B are disjoint, P(A ∪ C) = `2/3`, P(B ∪ C) = `3/4`, P(A ∪ B ∪ C) = `11/12`. Find P(A), P(B) and P(C)


Solve the following:

Consider independent trails consisting of rolling a pair of fair dice, over and over What is the probability that a sum of 5 appears before sum of 7?


Solve the following:

A machine produces parts that are either good (90%), slightly defective (2%), or obviously defective (8%). Produced parts get passed through an automatic inspection machine, which is able to detect any part that is obviously defective and discard it. What is the quality of the parts that make it throught the inspection machine and get shipped?


If A and B are independent events such that 0 < P(A) < 1 and 0 < P(B) < 1, then which of the following is not correct?


Three events A, B and C are said to be independent if P(A ∩ B ∩ C) = P(A) P(B) P(C).


Let E1 and E2 be two independent events such that P(E1) = P1 and P(E2) = P2. Describe in words of the events whose probabilities are: P1P2 


If A and B are two events such that P(A) = `1/2`, P(B) = `1/3` and P(A/B) = `1/4`, P(A' ∩ B') equals ______.


If A and B are two events and A ≠ Φ, B ≠ Φ, then ______.


If two events are independent, then ______.


If the events A and B are independent, then P(A ∩ B) is equal to ______.


Let P(A) > 0 and P(B) > 0. Then A and B can be both mutually exclusive and independent.


If A, B and C are three independent events such that P(A) = P(B) = P(C) = p, then P(At least two of A, B, C occur) = 3p2 – 2p3 


If A and B are two events such that P(A|B) = p, P(A) = p, P(B) = `1/3` and P(A ∪ B) = `5/9`, then p = ______.


Let E1 and E2 be two independent events. Let P(E) denotes the probability of the occurrence of the event E. Further, let E'1 and E'2 denote the complements of E1 and E2, respectively. If P(E'1 ∩ E2) = `2/15` and P(E1 ∩ E'2) = `1/6`, then P(E1) is


If P(A) = `3/5` and P(B) = `1/5`, find P(A ∩ B), If A and B are independent events.


Two cards are drawn at random and without replacement from a pack of 52 playing cards. Find the probability that both the cards are black.


Let Bi(i = 1, 2, 3) be three independent events in a sample space. The probability that only B1 occur is α, only B2 occurs is β and only B3 occurs is γ. Let p be the probability that none of the events Bi occurs and these 4 probabilities satisfy the equations (α – 2β)p = αβ and (β – 3γ) = 2βy (All the probabilities are assumed to lie in the interval (0, 1)). Then `("P"("B"_1))/("P"("B"_3))` is equal to ______.


Given two independent events, if the probability that exactly one of them occurs is `26/49` and the probability that none of them occurs is `15/49`, then the probability of more probable of the two events is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×