Advertisements
Advertisements
Question
One of the condition of Bernoulli trials is that the trials are independent of each other.
Options
True
False
Solution
This statement is True.
APPEARS IN
RELATED QUESTIONS
The probability that a bulb produced by a factory will fuse after 150 days of use is 0.05. What is the probability that out of 5 such bulbs
(i) none
(ii) not more than one
(iii) more than one
(iv) at least one, will fuse after 150 days of use.
In a hurdle race, a player has to cross 10 hurdles. The probability that he will clear each hurdle is 5/6 . What is the probability that he will knock down fewer than 2 hurdles?
How many times must a man toss a fair coin so that the probability of having at least one head is more than 90%?
Five cards are drawn successively with replacement from a well-shuffled pack of 52 cards. What is the probability that all the five cards are spades ?
A bag contains 10 balls, each marked with one of the digits from 0 to 9. If four balls are drawn successively with replacement from the bag, what is the probability that none is marked with the digit 0?
A coin is tossed 5 times. If X is the number of heads observed, find the probability distribution of X.
An unbiased die is thrown twice. A success is getting a number greater than 4. Find the probability distribution of the number of successes.
Suppose that a radio tube inserted into a certain type of set has probability 0.2 of functioning more than 500 hours. If we test 4 tubes at random what is the probability that exactly three of these tubes function for more than 500 hours?
The probability that a student entering a university will graduate is 0.4. Find the probability that out of 3 students of the university none will graduate
A person buys a lottery ticket in 50 lotteries, in each of which his chance of winning a prize is \[\frac{1}{100} .\] What is the probability that he will win a prize exactly once.
The probability of a man hitting a target is 0.25. He shoots 7 times. What is the probability of his hitting at least twice?
In a binomial distribution the sum and product of the mean and the variance are \[\frac{25}{3}\] and \[\frac{50}{3}\]
respectively. Find the distribution.
The mean of a binomial distribution is 20 and the standard deviation 4. Calculate the parameters of the binomial distribution.
The mean of a binomial distribution is 10 and its standard deviation is 2; write the value of q.
A fair coin is tossed 100 times. The probability of getting tails an odd number of times is
If the mean and variance of a binomial variate X are 2 and 1 respectively, then the probability that X takes a value greater than 1 is
A biased coin with probability p, 0 < p < 1, of heads is tossed until a head appears for the first time. If the probability that the number of tosses required is even is 2/5, then p equals
A coin is tossed 10 times. The probability of getting exactly six heads is
Five cards are drawn successively with replacement from a well-shuffled pack of 52 cards. What is the probability that only 3 cards are spades ?
The probability that a bulb produced by a factory will fuse after 150 days of use is 0.05. Find the probability that out of 5 such bulbs not more than one will fuse after 150 days of use
The probability that a bulb produced by a factory will fuse after 150 days of use is 0.05. Find the probability that out of 5 such bulbs more than one will fuse after 150 days of use
The probability that a bulb produced by a factory will fuse after 150 days of use is 0.05. Find the probability that out of 5 such bulbs at least one will fuse after 150 days of use
For Bernoulli Distribution, state formula for E(X) and V(X).
Explain why the experiment of tossing a coin three times is said to have binomial distribution.
Which one is not a requirement of a binomial distribution?
Suppose a random variable X follows the binomial distribution with parameters n and p, where 0 < p < 1. If P(x = r)/P(x = n – r) is independent of n and r, then p equals ______.
The mean, median and mode for binomial distribution will be equal when
The sum of n terms of the series `1 + 2(1 + 1/n) + 3(1 + 1/n)^2 + ...` is
An experiment succeeds thrice as often as it fails. Then in next five trials, find the probability that there will be two successes.