Advertisements
Advertisements
Question
A coin is tossed 10 times. The probability of getting exactly six heads is
Options
\[\frac{512}{513}\]
\[\frac{105}{512}\]
\[\frac{100}{153}\]
\[^{10}{}{C}_6\]
Solution
\[\frac{105}{512}\]
\[\text{ Let X denote the number of heads obtained in 10 tosses of a coin } . \]
\[\text{ Then, X follows a binomial distribution with n = 6 } , p = \frac{1}{2} = q\]
\[\text{ The distribution is given by } \]
\[P(X = r) = ^{10}{}{C}_r \left( \frac{1}{2} \right)^r \left( \frac{1}{2} \right)^{10 - r} \]
\[ \therefore P(X = 6) = \frac{^{10}{}{C}_6}{2^{10}}\]
\[ = \frac{105}{2^9}\]
\[ = \frac{105}{512}\]
APPEARS IN
RELATED QUESTIONS
Five cards are drawn successively with replacement from a well-shuffled deck of 52 cards. What is the probability that
- all the five cards are spades?
- only 3 cards are spades?
- none is a spade?
Suppose X has a binomial distribution `B(6, 1/2)`. Show that X = 3 is the most likely outcome.
(Hint: P(X = 3) is the maximum among all P (xi), xi = 0, 1, 2, 3, 4, 5, 6)
In a hurdle race, a player has to cross 10 hurdles. The probability that he will clear each hurdle is 5/6 . What is the probability that he will knock down fewer than 2 hurdles?
A fair coin is tossed 8 times. Find the probability that it shows heads exactly 5 times.
A fair coin is tossed 9 times. Find the probability that it shows head exactly 5 times.
The probability of a man hitting a target is 1/4. If he fires 7 times, what is the probability of his hitting the target at least twice?
Assume that on an average one telephone number out of 15 called between 2 P.M. and 3 P.M. on week days is busy. What is the probability that if six randomly selected telephone numbers are called, at least 3 of them will be busy?
A box contains 100 tickets, each bearing one of the numbers from 1 to 100. If 5 tickets are drawn successively with replacement from the box, find the probability that all the tickets bear numbers divisible by 10.
A bag contains 10 balls, each marked with one of the digits from 0 to 9. If four balls are drawn successively with replacement from the bag, what is the probability that none is marked with the digit 0?
A bag contains 7 green, 4 white and 5 red balls. If four balls are drawn one by one with replacement, what is the probability that one is red?
A coin is tossed 5 times. If X is the number of heads observed, find the probability distribution of X.
A man wins a rupee for head and loses a rupee for tail when a coin is tossed. Suppose that he tosses once and quits if he wins but tries once more if he loses on the first toss. Find the probability distribution of the number of rupees the man wins.
The items produced by a company contain 10% defective items. Show that the probability of getting 2 defective items in a sample of 8 items is
\[\frac{28 \times 9^6}{{10}^8} .\]
A card is drawn and replaced in an ordinary pack of 52 cards. How many times must a card be drawn so that (i) there is at least an even chance of drawing a heart (ii) the probability of drawing a heart is greater than 3/4?
The probability that a certain kind of component will survive a given shock test is \[\frac{3}{4} .\] Find the probability that among 5 components tested at most 3 will survive .
It is known that 60% of mice inoculated with a serum are protected from a certain disease. If 5 mice are inoculated, find the probability that more than 3 contract the disease .
The probability of a shooter hitting a target is \[\frac{3}{4} .\] How many minimum number of times must he/she fire so that the probability of hitting the target at least once is more than 0.99?
A die is thrown 5 times. Find the probability that an odd number will come up exactly three times.
Find the binomial distribution when the sum of its mean and variance for 5 trials is 4.8.
The mean of a binomial distribution is 20 and the standard deviation 4. Calculate the parameters of the binomial distribution.
In eight throws of a die, 5 or 6 is considered a success. Find the mean number of successes and the standard deviation.
Find the expected number of boys in a family with 8 children, assuming the sex distribution to be equally probable.
If X follows a binomial distribution with mean 4 and variance 2, find P (X ≥ 5).
A die is thrown three times. Let X be 'the number of twos seen'. Find the expectation of X.
If the mean of a binomial distribution is 20 and its standard deviation is 4, find p.
If in a binomial distribution n = 4, P (X = 0) = \[\frac{16}{81}\], then P (X = 4) equals
If X is a binomial variate with parameters n and p, where 0 < p < 1 such that \[\frac{P\left( X = r \right)}{P\left( X = n - r \right)}\text{ is } \] independent of n and r, then p equals
A fair coin is tossed 99 times. If X is the number of times head appears, then P (X = r) is maximum when r is
If X follows a binomial distribution with parameters n = 8 and p = 1/2, then P (|X − 4| ≤ 2) equals
Five cards are drawn successively with replacement from a well-shuffled pack of 52 cards. What is the probability that none is a spade ?
Bernoulli distribution is a particular case of binomial distribution if n = ______
Explain why the experiment of tossing a coin three times is said to have binomial distribution.
If x4 occurs in the tth term in the expansion of `(x^4 + 1/x^3)^15`, then the value oft is equal to:
In a box containing 100 bulbs, 10 are defective. The probability that out of a sample of 5 bulbs, none is defective is:-
An ordinary dice is rolled for a certain number of times. If the probability of getting an odd number 2 times is equal to the probability of getting an even number 3 times, then the probability of getting an odd number for odd number of times is ______.
The mean and variance of a binomial distribution are α and `α/3` respectively. If P(X = 1) = `4/243`, then P(X = 4 or 5) is equal to ______.
The probability of hitting a target in any shot is 0.2. If 5 shots are fired, find the probability that the target will be hit at least twice.