Advertisements
Advertisements
Question
A five-digit number is written down at random. The probability that the number is divisible by 5, and no two consecutive digits are identical, is
Options
\[\frac{1}{5}\]
\[\frac{1}{5} \left( \frac{9}{10} \right)^3\]
\[\left( \frac{3}{5} \right)^4\]
None of these
Solution
Let number be abcde
Case 1 : e = 0
a, b, c can be filled in 9 × 9 × 9 ways
c = 0 ⇒ 9 × 8 × 1 ways and d has 9 choices
c ≠ 0 ⇒ (9 × 9 × 9 – 9 × 8 × 1) = 657
in the case d has 8 choices ⇒ 657 × 8
Total case = 9 × 8 × 1 × 9 + 657 × 8 ⇒ 5904
Case 2 : e = 5
If c = 5,
if a ≠ 5 then a, b, c can be filled in 8 × 8 × 1 = 64 ways
if a = 5 then a, b, c can be filled in 1 × 9 × 1 = 9 ways
if c ≠ 5, then first 3 digits can be filled in 729 – 64 – 9 = 656 ways
here d has 8 choices
No. of member ending in 5 and no two consecutive digits being identical ⇒ (64 + 9) × 9 + 656 × 8
Hence, None of these
APPEARS IN
RELATED QUESTIONS
A couple has two children, Find the probability that both children are males, if it is known that at least one of the children is male.
If getting 5 or 6 in a throw of an unbiased die is a success and the random variable X denotes the number of successes in six throws of the die, find P (X ≥ 4).
Five cards are drawn successively with replacement from a well-shuffled pack of 52 cards. What is the probability that all the five cards are spades ?
In a large bulk of items, 5 percent of the items are defective. What is the probability that a sample of 10 items will include not more than one defective item?
A man wins a rupee for head and loses a rupee for tail when a coin is tossed. Suppose that he tosses once and quits if he wins but tries once more if he loses on the first toss. Find the probability distribution of the number of rupees the man wins.
An unbiased coin is tossed 8 times. Find, by using binomial distribution, the probability of getting at least 6 heads.
Suppose that a radio tube inserted into a certain type of set has probability 0.2 of functioning more than 500 hours. If we test 4 tubes at random what is the probability that exactly three of these tubes function for more than 500 hours?
Assume that the probability that a bomb dropped from an aeroplane will strike a certain target is 0.2. If 6 bombs are dropped, find the probability that exactly 2 will strike the target .
It is known that 60% of mice inoculated with a serum are protected from a certain disease. If 5 mice are inoculated, find the probability that none contract the disease .
The probability that a student entering a university will graduate is 0.4. Find the probability that out of 3 students of the university all will graduate .
A person buys a lottery ticket in 50 lotteries, in each of which his chance of winning a prize is \[\frac{1}{100} .\] What is the probability that he will win a prize exactly once.
A person buys a lottery ticket in 50 lotteries, in each of which his chance of winning a prize is \[\frac{1}{100} .\] What is the probability that he will win a prize at least twice.
A pair of dice is thrown 4 times. If getting a doublet is considered a success, find the probability distribution of the number of successes.
The probability of a man hitting a target is 0.25. He shoots 7 times. What is the probability of his hitting at least twice?
A factory produces bulbs. The probability that one bulb is defective is \[\frac{1}{50}\] and they are packed in boxes of 10. From a single box, find the probability that none of the bulbs is defective .
A box has 20 pens of which 2 are defective. Calculate the probability that out of 5 pens drawn one by one with replacement, at most 2 are defective.
Determine the binomial distribution whose mean is 9 and variance 9/4.
If the mean and variance of a binomial distribution are respectively 9 and 6, find the distribution.
Find the binomial distribution whose mean is 5 and variance \[\frac{10}{3} .\]
If the mean and variance of a binomial variate X are 2 and 1 respectively, find P (X > 1).
If in a binomial distribution n = 4 and P (X = 0) = \[\frac{16}{81}\] , find q.
If the mean and variance of a binomial distribution are 4 and 3, respectively, find the probability of no success.
If for a binomial distribution P (X = 1) = P (X = 2) = α, write P (X = 4) in terms of α.
A rifleman is firing at a distant target and has only 10% chance of hitting it. The least number of rounds he must fire in order to have more than 50% chance of hitting it at least once is
One hundred identical coins, each with probability p of showing heads are tossed once. If 0 < p < 1 and the probability of heads showing on 50 coins is equal to that of heads showing on 51 coins, the value of p is
A fair coin is tossed 99 times. If X is the number of times head appears, then P (X = r) is maximum when r is
If the mean and variance of a binomial distribution are 4 and 3, respectively, the probability of getting exactly six successes in this distribution is
In a binomial distribution, the probability of getting success is 1/4 and standard deviation is 3. Then, its mean is
For a binomial variate X, if n = 3 and P (X = 1) = 8 P (X = 3), then p =
Five cards are drawn successively with replacement from a well-shuffled pack of 52 cards. What is the probability that none is a spade ?
For X ~ B(n, p) and P(X = x) = `""^8"C"_x(1/2)^x (1/2)^(8 - x)`, then state value of n and p
If x4 occurs in the tth term in the expansion of `(x^4 + 1/x^3)^15`, then the value oft is equal to:
If a random variable X follows the Binomial distribution B(5, p) such that P(X = 0) = P(X = 1), then `(P(X = 2))/(P(X = 3))` is equal to ______.
The probability of hitting a target in any shot is 0.2. If 5 shots are fired, find the probability that the target will be hit at least twice.
In three throws with a pair of dice find the chance of throwing doublets at least twice.
A fair coin is tossed 8 times. Find the probability that it shows heads at most once.
If the sum of mean and variance of a binomial distribution is `25/9` for 5 trials, find p.