English

If the Mean and Variance of a Binomial Distribution Are 4 and 3, Respectively, the Probability of Getting Exactly Six Successes in this Distribution is - Mathematics

Advertisements
Advertisements

Question

If the mean and variance of a binomial distribution are 4 and 3, respectively, the probability of getting exactly six successes in this distribution is

Options

  • \[^{16}{}{C}_6 \left( \frac{1}{4} \right)^{10} \left( \frac{3}{4} \right)^6\]

     
  • \[^{16}{}{C}_6 \left( \frac{1}{4} \right)^6 \left( \frac{3}{4} \right)^{10}\]

  • \[^{12}{}{C}_6 \left( \frac{1}{20} \right) \left( \frac{3}{4} \right)^6\]

  • \[^{12}{}{C}_6 \left( \frac{1}{4} \right)^6 \left( \frac{3}{4} \right)^6\]

     
MCQ

Solution

\[^{16}{}{C}_6 \left( \frac{1}{4} \right)^6 \left( \frac{3}{4} \right)^{10}\]

Mean (np) = 4 and Variance (npq) = 3  

\[\therefore q = \frac{3}{4}\]
\[ \Rightarrow p = 1 - \frac{3}{4} = \frac{1}{4}\text{ and } n = 16\]
\[\text{ Let X denotes the number of successes in 16 trials . Then, }  \]
\[P(X = r) = ^{16}{}{C}_r \left( \frac{1}{4} \right)^r \left( \frac{3}{4} \right)^{16 - r} \]
\[ \Rightarrow P(X = 6) = \text{ Probability (getting exactly 6 successes } )\]
\[ = 16 C_6 \left( \frac{1}{4} \right)^6 \left( \frac{3}{4} \right)^{10} \]

shaalaa.com
  Is there an error in this question or solution?
Chapter 33: Binomial Distribution - MCQ [Page 29]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 33 Binomial Distribution
MCQ | Q 20 | Page 29

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Given X ~ B (n, p)
If n = 10 and p = 0.4, find E(X) and var (X).


There are 5% defective items in a large bulk of items. What is the probability that a sample of 10 items will include not more than one defective item?


A bag consists of 10 balls each marked with one of the digits 0 to 9. If four balls are drawn successively with replacement from the bag, what is the probability that none is marked with the digit 0?


A couple has two children, Find the probability that both children are males, if it is known that at least one of the children is male.


An experiment succeeds twice as often as it fails. Find the probability that in the next six trials, there will be at least 4 successes.



Five cards are drawn one by one, with replacement, from a well-shuffled deck of 52 cards. Find the probability that
(i) all the five cards diamonds
(ii) only 3 cards are diamonds
(iii) none is a diamond


Five cards are drawn successively with replacement from a well-shuffled pack of 52 cards. What is the probability that all the five cards are spades ?



A bag contains 7 red, 5 white and 8 black balls. If four balls are drawn one by one with replacement, what is the probability that none is white ?


An urn contains four white and three red balls. Find the probability distribution of the number of red balls in three draws with replacement from the urn.


The mathematics department has 8 graduate assistants who are assigned to the same office. Each assistant is just as likely to study at home as in office. How many desks must there be in the office so that each assistant has a desk at least 90% of the time?


The probability that a certain kind of component will survive a given shock test is \[\frac{3}{4} .\]  Find the probability that among 5 components tested exactly 2 will survive .

 

The probability that a certain kind of component will survive a given shock test is \[\frac{3}{4} .\]  Find the probability that among 5 components tested at most 3 will survive .

 

Assume that the probability that a bomb dropped from an aeroplane will strike a certain target is 0.2. If 6 bombs are dropped, find the probability that at least 2 will strike the target

 

It is known that 60% of mice inoculated with a serum are protected from a certain disease. If 5 mice are inoculated, find the probability that none contract the disease .


It is known that 60% of mice inoculated with a serum are protected from a certain disease. If 5 mice are inoculated, find the probability that more than 3 contract the disease .

 

Ten eggs are drawn successively, with replacement, from a lot containing 10% defective eggs. Find the probability that there is at least one defective egg.


The probability of a shooter hitting a target is \[\frac{3}{4} .\] How many minimum number of times must he/she fire so that the probability of hitting the target at least once is more than 0.99?

 

A factory produces bulbs. The probability that one bulb is defective is \[\frac{1}{50}\] and they are packed in boxes of 10. From a single box, find the probability that none of the bulbs is defective .

 

A factory produces bulbs. The probability that one bulb is defective is \[\frac{1}{50}\] and they are packed in boxes of 10. From a single box, find the probability that exactly two bulbs are defective


Can the mean of a binomial distribution be less than its variance?

 

Determine the binomial distribution whose mean is 9 and variance 9/4.

 

If the mean and variance of a binomial distribution are respectively 9 and 6, find the distribution.


A dice is thrown thrice. A success is 1 or 6 in a throw. Find the mean and variance of the number of successes.


In a group of 200 items, if the probability of getting a defective item is 0.2, write the mean of the distribution.


If the mean of a binomial distribution is 20 and its standard deviation is 4, find p.

 

If the mean and variance of a binomial distribution are 4 and 3, respectively, find the probability of no success.


If X follows binomial distribution with parameters n = 5, p and P(X = 2) = 9P(X = 3), then find the value of p.  


A fair die is thrown twenty times. The probability that on the tenth throw the fourth six appears is


A fair coin is tossed 99 times. If X is the number of times head appears, then P (X = r) is maximum when r is


A coin is tossed n times. The probability of getting at least once is greater than 0.8. Then, the least value of n, is


Mark the correct alternative in the following question:
The probability that a person is not a swimmer is 0.3. The probability that out of 5 persons 4 are swimmers is


A bag contains 7 red, 5 white and 8 black balls. If four balls are drawn one by one with replacement, what is the probability that all are white ? 


A bag contains 7 red, 5 white and 8 black balls. If four balls are drawn one by one with replacement, what is the probability that any two are white ?


Find the mean and variance of the random variable X which denotes the number of doublets in four throws of a pair of dice.


If the coefficients of x7 and x8 in `(2 + x/3)^n` are equal, then n is


A pair of dice is thrown four times. If getting a doublet is considered a success then find the probability of two success.


The mean and variance of a binomial distribution are α and `α/3` respectively. If P(X = 1) = `4/243`, then P(X = 4 or 5) is equal to ______.


The mean and variance of binomial distribution are 4 and 2 respectively. Find the probability of two successes.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×