Advertisements
Advertisements
Question
An urn contains four white and three red balls. Find the probability distribution of the number of red balls in three draws with replacement from the urn.
Solution
As three balls are drawn with replacement, the number of white balls, say X, follows binomial distribution with n =3
\[p = \frac{3}{7} \text{ and } q = \frac{4}{7}\]
\[P(X = r) = ^{3}{}{C}_r \left( \frac{3}{7} \right)^r \left( \frac{4}{7} \right)^{3 - r} , r = 0, 1, 2, 3\]
\[P(X = 0) = ^{3}{}{C}_0 \left( \frac{3}{7} \right)^0 \left( \frac{4}{7} \right)^{3 - 0} \]
\[ P(X = 1) = ^{3}{}{C}_1 \left( \frac{3}{7} \right)^1 \left( \frac{4}{7} \right)^{3 - 1} \]
\[P(X = 2) = ^{3}{}{C}_2 \left( \frac{3}{7} \right)^2 \left( \frac{4}{7} \right)^{3 - 2} \]
\[P(X = 3) = ^{3}{}{C}_3 \left( \frac{3}{7} \right)^3 \left( \frac{4}{7} \right)^{3 - 3} \]
X 0 1 2 3
\[P(X) \ \frac{64}{343} \frac{144}{343} \frac{108}{343} \frac{27}{343}\]
APPEARS IN
RELATED QUESTIONS
Five cards are drawn one by one, with replacement, from a well-shuffled deck of 52 cards. Find the probability that
(i) all the five cards diamonds
(ii) only 3 cards are diamonds
(iii) none is a diamond
A bag contains 10 balls, each marked with one of the digits from 0 to 9. If four balls are drawn successively with replacement from the bag, what is the probability that none is marked with the digit 0?
Find the probability distribution of the number of sixes in three tosses of a die.
An unbiased die is thrown twice. A success is getting a number greater than 4. Find the probability distribution of the number of successes.
Six coins are tossed simultaneously. Find the probability of getting
(i) 3 heads
(ii) no heads
(iii) at least one head
The probability that a certain kind of component will survive a given shock test is \[\frac{3}{4} .\] Find the probability that among 5 components tested at most 3 will survive .
It is known that 60% of mice inoculated with a serum are protected from a certain disease. If 5 mice are inoculated, find the probability that more than 3 contract the disease .
The probability that a student entering a university will graduate is 0.4. Find the probability that out of 3 students of the university none will graduate
The probability that a student entering a university will graduate is 0.4. Find the probability that out of 3 students of the university only one will graduate .
A person buys a lottery ticket in 50 lotteries, in each of which his chance of winning a prize is \[\frac{1}{100} .\] What is the probability that he will win a prize at least twice.
From a lot of 30 bulbs that includes 6 defective bulbs, a sample of 4 bulbs is drawn at random with replacement. Find the probability distribution of the number of defective bulbs.
Determine the binomial distribution whose mean is 20 and variance 16.
In a binomial distribution the sum and product of the mean and the variance are \[\frac{25}{3}\] and \[\frac{50}{3}\]
respectively. Find the distribution.
If on an average 9 ships out of 10 arrive safely at ports, find the mean and S.D. of the ships returning safely out of a total of 500 ships.
If a random variable X follows a binomial distribution with mean 3 and variance 3/2, find P (X ≤ 5).
If X follows a binomial distribution with mean 4 and variance 2, find P (X ≥ 5).
If the mean of a binomial distribution is 20 and its standard deviation is 4, find p.
The mean of a binomial distribution is 10 and its standard deviation is 2; write the value of q.
If the mean and variance of a binomial variate X are 2 and 1 respectively, find P (X > 1).
An unbiased coin is tossed 4 times. Find the mean and variance of the number of heads obtained.
If in a binomial distribution n = 4, P (X = 0) = \[\frac{16}{81}\], then P (X = 4) equals
Let X denote the number of times heads occur in n tosses of a fair coin. If P (X = 4), P (X= 5) and P (X = 6) are in AP, the value of n is
A fair coin is tossed 99 times. If X is the number of times head appears, then P (X = r) is maximum when r is
The least number of times a fair coin must be tossed so that the probability of getting at least one head is at least 0.8, is
If X follows a binomial distribution with parameters n = 100 and p = 1/3, then P (X = r) is maximum when r =
In a binomial distribution, the probability of getting success is 1/4 and standard deviation is 3. Then, its mean is
A coin is tossed 4 times. The probability that at least one head turns up is
Mark the correct alternative in the following question:
Suppose a random variable X follows the binomial distribution with parameters n and p, where 0 < p < 1. If \[\frac{P\left( X = r \right)}{P\left( X = n - r \right)}\] is independent of n and r, then p equals
A bag contains 7 red, 5 white and 8 black balls. If four balls are drawn one by one with replacement, what is the probability that all are white ?
The probability that a bulb produced by a factory will fuse after 150 days of use is 0.05. Find the probability that out of 5 such bulbs not more than one will fuse after 150 days of use
Find the mean and variance of the random variable X which denotes the number of doublets in four throws of a pair of dice.
For Bernoulli Distribution, state formula for E(X) and V(X).
For X ~ B(n, p) and P(X = x) = `""^8"C"_x(1/2)^x (1/2)^(8 - x)`, then state value of n and p
The sum of n terms of the series `1 + 2(1 + 1/n) + 3(1 + 1/n)^2 + ...` is
In a box containing 100 bulbs, 10 are defective. The probability that out of a sample of 5 bulbs, none is defective is:-
A box B1 contains 1 white ball and 3 red balls. Another box B2 contains 2 white balls and 3 red balls. If one ball is drawn at random from each of the boxes B1 and B2, then find the probability that the two balls drawn are of the same colour.
In three throws with a pair of dice find the chance of throwing doublets at least twice.
A fair coin is tossed 6 times. Find the probability of getting heads 4 times.
The mean and variance of binomial distribution are 4 and 2 respectively. Find the probability of two successes.