Advertisements
Advertisements
Question
Let X denote the number of times heads occur in n tosses of a fair coin. If P (X = 4), P (X= 5) and P (X = 6) are in AP, the value of n is
Options
7, 14
10, 14
12, 7
14, 12
Solution
7, 14
\[\text{ Here } , p = \frac{1}{2}\text{ and } q = \frac{1}{2}\]
\[\text{ Binomial distribution is given by } \]
\[P(X = r) =^{n}{}{C}_r \left( \frac{1}{2} \right)^r \left( \frac{1}{2} \right)^{n - r}\]
P (X = 4), P (X = 5), P(X = 6) are in A.P.
\[\therefore ^{n}{}{C}_4 +^{n}{}{C}_6 = 2 ^{n}{}{C}_5 \]
\[ \Rightarrow \frac{n(n - 1)(n - 2)(n - 3)}{2\left( 4! \right)} + \frac{n(n - 1)(n - 2)(n - 3)(n - 4)(n - 5)}{2\left( 6! \right)} = \frac{n(n - 1)(n - 2)(n - 3)(n - 4)}{5!}\]
\[\text{ By simplifying, we get} \]
\[\frac{1}{2} + \frac{(n - 4)(n - 5)}{2(30)} = \frac{n - 4}{5}\]
\[\text{ Taking LCM as 60, we get}\]
\[30 + n^2 - 9n + 20 = 12n - 48 \]
\[ \Rightarrow n^2 - 21n + 98 = 0\]
\[ \Rightarrow (n - 7)(n - 14) = 0\]
\[ \Rightarrow n = 7, 14\]
APPEARS IN
RELATED QUESTIONS
There are 5% defective items in a large bulk of items. What is the probability that a sample of 10 items will include not more than one defective item?
The probability that a student is not a swimmer is 1/5 . Then the probability that out of five students, four are swimmers is
(A) `""^5C_4 (4/5)^4 1/5`
(B) `(4/5)^4 1/5
(C) `""^5C_1 1/5 (4/5)^4 `
(D) None of these
Assume that on an average one telephone number out of 15 called between 2 P.M. and 3 P.M. on week days is busy. What is the probability that if six randomly selected telephone numbers are called, at least 3 of them will be busy?
The probability that a bulb produced by a factory will fuse after 150 days of use is 0.05. Find the probability that out of 5 such bulbs none will fuse after 150 days of use
Suppose that 90% of people are right-handed. What is the probability that at most 6 of a random sample of 10 people are right-handed?
A coin is tossed 5 times. If X is the number of heads observed, find the probability distribution of X.
An unbiased die is thrown twice. A success is getting a number greater than 4. Find the probability distribution of the number of successes.
A man wins a rupee for head and loses a rupee for tail when a coin is tossed. Suppose that he tosses once and quits if he wins but tries once more if he loses on the first toss. Find the probability distribution of the number of rupees the man wins.
The probability that a student entering a university will graduate is 0.4. Find the probability that out of 3 students of the university only one will graduate .
In a multiple-choice examination with three possible answers for each of the five questions out of which only one is correct, what is the probability that a candidate would get four or more correct answers just by guessing?
The probability of a shooter hitting a target is \[\frac{3}{4} .\] How many minimum number of times must he/she fire so that the probability of hitting the target at least once is more than 0.99?
From a lot of 30 bulbs that includes 6 defective bulbs, a sample of 4 bulbs is drawn at random with replacement. Find the probability distribution of the number of defective bulbs.
The probability of a man hitting a target is 0.25. He shoots 7 times. What is the probability of his hitting at least twice?
A factory produces bulbs. The probability that one bulb is defective is \[\frac{1}{50}\] and they are packed in boxes of 10. From a single box, find the probability that exactly two bulbs are defective
A factory produces bulbs. The probability that one bulb is defective is \[\frac{1}{50}\] and they are packed in boxes of 10. From a single box, find the probability that more than 8 bulbs work properly
If the mean and variance of a binomial distribution are respectively 9 and 6, find the distribution.
Find the binomial distribution when the sum of its mean and variance for 5 trials is 4.8.
The probability that an item produced by a factory is defective is 0.02. A shipment of 10,000 items is sent to its warehouse. Find the expected number of defective items and the standard deviation.
If X follows a binomial distribution with mean 4 and variance 2, find P (X ≥ 5).
In a binomial distribution, if n = 20 and q = 0.75, then write its mean.
If in a binomial distribution mean is 5 and variance is 4, write the number of trials.
In a group of 200 items, if the probability of getting a defective item is 0.2, write the mean of the distribution.
If the mean of a binomial distribution is 20 and its standard deviation is 4, find p.
A rifleman is firing at a distant target and has only 10% chance of hitting it. The least number of rounds he must fire in order to have more than 50% chance of hitting it at least once is
A fair coin is tossed a fixed number of times. If the probability of getting seven heads is equal to that of getting nine heads, the probability of getting two heads is
If X is a binomial variate with parameters n and p, where 0 < p < 1 such that \[\frac{P\left( X = r \right)}{P\left( X = n - r \right)}\text{ is } \] independent of n and r, then p equals
One hundred identical coins, each with probability p of showing heads are tossed once. If 0 < p < 1 and the probability of heads showing on 50 coins is equal to that of heads showing on 51 coins, the value of p is
Mark the correct alternative in the following question:
The probability that a person is not a swimmer is 0.3. The probability that out of 5 persons 4 are swimmers is
Mark the correct alternative in the following question:
Which one is not a requirement of a binomial dstribution?
Mark the correct alternative in the following question:
The probability of guessing correctly at least 8 out of 10 answers of a true false type examination is
Bernoulli distribution is a particular case of binomial distribution if n = ______
For Bernoulli Distribution, state formula for E(X) and V(X).
Suppose a random variable X follows the binomial distribution with parameters n and p, where 0 < p < 1. If P(x = r)/P(x = n – r) is independent of n and r, then p equals ______.
The mean, median and mode for binomial distribution will be equal when
The probability of hitting a target in any shot is 0.2. If 5 shots are fired, find the probability that the target will be hit at least twice.
A student is given a quiz with 10 true or false questions and he answers by sheer guessing. If X is the number of questions answered correctly write the p.m.f. of X. If the student passes the quiz by getting 7 or more correct answers what is the probability that the student passes the quiz?
If the sum of mean and variance of a binomial distribution is `25/9` for 5 trials, find p.
If X ∼ B(n, p), n = 6 and 9 P(X = 4) = P(X = 2), then find the value of p.