Advertisements
Advertisements
Question
The probability that a bulb produced by a factory will fuse after 150 days of use is 0.05. Find the probability that out of 5 such bulbs none will fuse after 150 days of use
Solution
Let X be the number of bulbs that fuse after 150 days.
X follows a binomial distribution with n = 5,
\[\text{ Or } p = \frac{1}{20}\text{ and } q = \frac{19}{20}\]
\[P(X = r) = ^{5}{}{C}_r \left( \frac{1}{20} \right)^r \left( \frac{19}{20} \right)^{5 - r} \]
\[\text{ Probability (none will fuse after 150 days of use } ) = P(X = 0) \]
\[ =^ {5}{}{C}_0 \left( \frac{1}{20} \right)^0 \left( \frac{19}{20} \right)^{5 - 0} \]
\[ = \left( \frac{19}{20} \right)^5 \]
APPEARS IN
RELATED QUESTIONS
Given that X ~ B(n= 10, p). If E(X) = 8 then the value of
p is ...........
(a) 0.6
(b) 0.7
(c) 0.8
(d) 0.4
A fair coin is tossed 8 times. Find the probability that it shows heads at least once
There are 5% defective items in a large bulk of items. What is the probability that a sample of 10 items will include not more than one defective item?
Find the probability of getting 5 exactly twice in 7 throws of a die.
A couple has two children, Find the probability that both children are males, if it is known that at least one of the children is male.
Five cards are drawn one by one, with replacement, from a well-shuffled deck of 52 cards. Find the probability that
(i) all the five cards diamonds
(ii) only 3 cards are diamonds
(iii) none is a diamond
Eight coins are thrown simultaneously. Find the chance of obtaining at least six heads.
A bag contains 7 red, 5 white and 8 black balls. If four balls are drawn one by one with replacement, what is the probability that none is white ?
A box contains 100 tickets, each bearing one of the numbers from 1 to 100. If 5 tickets are drawn successively with replacement from the box, find the probability that all the tickets bear numbers divisible by 10.
A bag contains 10 balls, each marked with one of the digits from 0 to 9. If four balls are drawn successively with replacement from the bag, what is the probability that none is marked with the digit 0?
An urn contains four white and three red balls. Find the probability distribution of the number of red balls in three draws with replacement from the urn.
Find the probability distribution of the number of sixes in three tosses of a die.
Three cards are drawn successively with replacement from a well shuffled pack of 52 cards. Find the mean and variance of number of red cards.
A coin is tossed 5 times. If X is the number of heads observed, find the probability distribution of X.
An experiment succeeds twice as often as it fails. Find the probability that in the next 6 trials there will be at least 4 successes.
The probability that a student entering a university will graduate is 0.4. Find the probability that out of 3 students of the university none will graduate
How many times must a man toss a fair coin so that the probability of having at least one head is more than 90% ?
The probability of a man hitting a target is 0.25. He shoots 7 times. What is the probability of his hitting at least twice?
The mean of a binomial distribution is 20 and the standard deviation 4. Calculate the parameters of the binomial distribution.
The probability that an item produced by a factory is defective is 0.02. A shipment of 10,000 items is sent to its warehouse. Find the expected number of defective items and the standard deviation.
The mean and variance of a binomial distribution are \[\frac{4}{3}\] and \[\frac{8}{9}\] respectively. Find P (X ≥ 1).
If the sum of the mean and variance of a binomial distribution for 6 trials is \[\frac{10}{3},\] find the distribution.
If in a binomial distribution mean is 5 and variance is 4, write the number of trials.
If in a binomial distribution n = 4 and P (X = 0) = \[\frac{16}{81}\] , find q.
If for a binomial distribution P (X = 1) = P (X = 2) = α, write P (X = 4) in terms of α.
A fair coin is tossed 100 times. The probability of getting tails an odd number of times is
One hundred identical coins, each with probability p of showing heads are tossed once. If 0 < p < 1 and the probability of heads showing on 50 coins is equal to that of heads showing on 51 coins, the value of p is
If the mean and variance of a binomial variate X are 2 and 1 respectively, then the probability that X takes a value greater than 1 is
A fair die is tossed eight times. The probability that a third six is observed in the eighth throw is
A coin is tossed 4 times. The probability that at least one head turns up is
A bag contains 7 red, 5 white and 8 black balls. If four balls are drawn one by one with replacement, what is the probability that any two are white ?
Explain why the experiment of tossing a coin three times is said to have binomial distribution.
In a box containing 100 bulbs, 10 are defective. The probability that out of a sample of 5 bulbs, none is defective is:-
If X ∼ B(n, p), n = 6 and 9 P(X = 4) = P(X = 2), then find the value of p.
An experiment succeeds thrice as often as it fails. Then in next five trials, find the probability that there will be two successes.
For the binomial distribution X ∼ B(n, p), n = 6 and P(X = 4) = P(X = 2). find p.