English

A Bag Contains 10 Balls, Each Marked with One of Digits from 0 to 9. If Four Balls Are Drawn Successively with Replacement from the Bag, What is the Probability that None is Marked with the Digit 0? - Mathematics

Advertisements
Advertisements

Question

A bag contains 10 balls, each marked with one of the digits from 0 to 9. If four balls are drawn successively with replacement from the bag, what is the probability that none is marked with the digit 0?

Sum

Solution

Let X be the number of balls marked with the digit 0 when 4 balls are drawn successfully with replacement.
As this is with replacement, X follows a binomial distribution with n = 4;

\[p = \text{ probabilty that a ball randomly drawn bears digit } 0 = \frac{1}{10}; q = 1 - p = \frac{9}{10};\]
\[P(X = r) = ^{4}{}{C}_r \left( \frac{1}{10} \right)^r \left( \frac{9}{10} \right)^{4 - r} \]
\[P(\text{ none bears the digit } 0) = P(X = 0)\]
\[ = ^{4}{}{C}_0 \left( \frac{1}{10} \right)^0 \left( \frac{9}{10} \right)^{4 - 0} \]
\[ = \left( \frac{9}{10} \right)^4\]

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 33: Binomial Distribution - Exercise 33.1 [Page 13]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 33 Binomial Distribution
Exercise 33.1 | Q 15 | Page 13

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

There are 5% defective items in a large bulk of items. What is the probability that a sample of 10 items will include not more than one defective item?


Five cards are drawn successively with replacement from a well-shuffled deck of 52 cards. What is the probability that

  1. all the five cards are spades?
  2. only 3 cards are spades?
  3. none is a spade?

A bag consists of 10 balls each marked with one of the digits 0 to 9. If four balls are drawn successively with replacement from the bag, what is the probability that none is marked with the digit 0?


On a multiple choice examination with three possible answers for each of the five questions, what is the probability that a candidate would get four or more correct answers just by guessing?


Find the probability of throwing at most 2 sixes in 6 throws of a single die.


It is known that 10% of certain articles manufactured are defective. What is the probability that in a random sample of 12 such articles, 9 are defective?


A couple has two children, Find the probability that both children are females, if it is known that the elder child is a female.


A fair coin is tossed 8 times. Find the probability that it shows heads exactly 5 times.


A bag contains 7 green, 4 white and 5 red balls. If four balls are drawn one by one with replacement, what is the probability that one is red?


The probability that a student entering a university will graduate is 0.4. Find the probability that out of 3 students of the university none will graduate 


In a 20-question true-false examination, suppose a student tosses a fair coin to determine his answer to each question. For every head, he answers 'true' and for every tail, he answers 'false'. Find the probability that he answers at least 12 questions correctly.


A pair of dice is thrown 4 times. If getting a doublet is considered a success, find the probability distribution of the number of successes.


A box has 20 pens of which 2 are defective. Calculate the probability that out of 5 pens drawn one by one with replacement, at most 2 are defective.


Can the mean of a binomial distribution be less than its variance?

 

In a binomial distribution the sum and product of the mean and the variance are \[\frac{25}{3}\] and \[\frac{50}{3}\]

 respectively. Find the distribution.

 
 

If on an average 9 ships out of 10 arrive safely at ports, find the mean and S.D. of the ships returning safely out of a total of 500 ships.


If X follows a binomial distribution with mean 4 and variance 2, find P (X ≥ 5).

 

If the sum of the mean and variance of a binomial distribution for 6 trials is \[\frac{10}{3},\]  find the distribution.

 
 

If the mean and variance of a binomial distribution are 4 and 3, respectively, find the probability of no success.


A fair coin is tossed a fixed number of times. If the probability of getting seven heads is equal to that of getting nine heads, the probability of getting two heads is


A fair coin is tossed 100 times. The probability of getting tails an odd number of times is


A fair die is thrown twenty times. The probability that on the tenth throw the fourth six appears is


If X is a binomial variate with parameters n and p, where 0 < p < 1 such that \[\frac{P\left( X = r \right)}{P\left( X = n - r \right)}\text{ is } \] independent of n and r, then p equals 


One hundred identical coins, each with probability p of showing heads are tossed once. If 0 < p < 1 and the probability of heads showing on 50 coins is equal to that of heads showing on 51 coins, the value of p is


If X follows a binomial distribution with parameters n = 100 and p = 1/3, then P (X = r) is maximum when r =


For a binomial variate X, if n = 3 and P (X = 1) = 8 P (X = 3), then p =


Mark the correct alternative in the following question:
A box contains 100 pens of which 10 are defective. What is the probability that out of a sample of 5 pens drawn one by one with replacement at most one is defective?


The probability that a bulb produced by a factory will fuse after 150 days of use is 0.05. Find the probability that out of 5 such bulbs not more than one will fuse after 150 days of use 


The probability that a bulb produced by a factory will fuse after 150 days of use is 0.05. Find the probability that out of 5 such bulbs at least one will fuse after 150 days of use 


In a multiple-choice examination with three possible answers for each of the five questions, what is the probability that a candidate would get four or more correct answers just by guessing?

In a box containing 100 bulbs, 10 are defective. The probability that out of a sample of 5 bulbs, none is defective is:-


If a random variable X follows the Binomial distribution B (33, p) such that 3P(X = 0) = P(X = 1), then the value of `(P(X = 15))/(P(X = 18)) - (P(X = 16))/(P(X = 17))` is equal to ______.


A student is given a quiz with 10 true or false questions and he answers by sheer guessing. If X is the number of questions answered correctly write the p.m.f. of X. If the student passes the quiz by getting 7 or more correct answers what is the probability that the student passes the quiz?


If X ∼ B(n, p), n = 6 and 9 P(X = 4) = P(X = 2), then find the value of p.


For the binomial distribution X ∼ B(n, p), n = 6 and P(X = 4) = P(X = 2). find p.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×