English

Find the Probability of Throwing at Most 2 Sixes in 6 Throws of a Single Die - Mathematics and Statistics

Advertisements
Advertisements

Question

Find the probability of throwing at most 2 sixes in 6 throws of a single die.

Sum

Solution

The repeated tossing of the die are Bernoulli trials. Let X represent the number of times of getting sixes in 6 throws of the die.

Probability of getting six in a single throw of die, `p = 1/6`

`therefore q = 1 - p = 1 - 1/6 = 5/6`

Clearly, X has a binomial distribution with n = 6

The p.m.f. of X is given by

P(X = x) = `"^nC_x  p^x q^(n - x)`

i.e. p(x) = `"^6C_x (1/6)^x (5/6)^(6 - x)`, x = 0, 1, 2, ....,6

P(at most 2 sixes) = P[X ≤ 2]

= p(0) + p(1) + p(2)

`= ""^6C_0 (1/6)^0 (5/6)^(6 - 0) + ""^6C_1 (1/6)^1 (5/6)^(6 - 1) + "^6C_2 (1/6)^2 (5/6)^(6 - 2)`

`= 1 xx 1 xx (5/6)^6 + 6 xx (1/6) xx (5/6)^5 + (6!)/(2!  4!) xx (1/6)^2 xx (5/6)^4`

`= (5/6)^6 + (5/6)^5 + (6 xx 5)/(2 xx 1) (1/6)^2 (5/6)^4`

`= (5/6)^6 + (5/6)^5 + 15 xx 1/36 xx (5/6)^4`

`= [(5/6)^2 + (5/6) + 15/36](5/6)^4`

`= (25/36 + 5/6 + 15/36).(5/6)^4`

`= ((25 + 30 + 15)/36) (5/6)^4`

`= 70/36 (5/6)^4`

`= 7/3 xx 10/12 xx (5/6)^4`

`= 7/3 xx 5/6 xx (5/6)^4 = 7/3 (5/6)^5`

Hence, the probability of throwing at most 2 sixes

`7/3 (5/6)^5`

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Probability - Exercise 13.5 [Page 578]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 13 Probability
Exercise 13.5 | Q 12 | Page 578

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Given X ~ B (n, p)
If n = 10 and p = 0.4, find E(X) and var (X).


There are 5% defective items in a large bulk of items. What is the probability that a sample of 10 items will include not more than one defective item?


A bag consists of 10 balls each marked with one of the digits 0 to 9. If four balls are drawn successively with replacement from the bag, what is the probability that none is marked with the digit 0?


On a multiple choice examination with three possible answers for each of the five questions, what is the probability that a candidate would get four or more correct answers just by guessing?


Find the probability of getting 5 exactly twice in 7 throws of a die.


In a box containing 100 bulbs, 10 are defective. The probability that out of a sample of 5 bulbs, none is defective is

(A) 10−1

(B) `(1/2)^5`

(C) `(9/10)^5`

(D) 9/10


A couple has two children, Find the probability that both children are females, if it is known that the elder child is a female.


Suppose that 90% of people are right-handed. What is the probability that at most 6 of a random sample of 10 people are right-handed?


In a hurdle race, a player has to cross 10 hurdles. The probability that he will clear each hurdle is 5/6 . What is the probability that he will knock down fewer than 2 hurdles?


An experiment succeeds twice as often as it fails. Find the probability that in the next six trials, there will be at least 4 successes.


How many times must a man toss a fair coin so that the probability of having at least one head is more than 90%?


A fair coin is tossed 8 times. Find the probability that it shows heads exactly 5 times.


A fair coin is tossed 9 times. Find the probability that it shows head exactly 5 times.


Assume that on an average one telephone number out of 15 called between 2 P.M. and 3 P.M. on week days is busy. What is the probability that if six randomly selected telephone numbers are called, at least 3 of them will be busy?


If getting 5 or 6 in a throw of an unbiased die is a success and the random variable X denotes the number of successes in six throws of the die, find P (X ≥ 4).

 

A bag contains 7 red, 5 white and 8 black balls. If four balls are drawn one by one with replacement, what is the probability that none is white ?


A bag contains 10 balls, each marked with one of the digits from 0 to 9. If four balls are drawn successively with replacement from the bag, what is the probability that none is marked with the digit 0?


In a large bulk of items, 5 percent of the items are defective. What is the probability that a sample of 10 items will include not more than one defective item?

 

The probability that a bulb produced by a factory will fuse after 150 days of use is 0.05. Find the probability that out of 5 such bulbs none will fuse after 150 days of use 


An unbiased die is thrown twice. A success is getting a number greater than 4. Find the probability distribution of the number of successes.

 

A man wins a rupee for head and loses a rupee for tail when a coin is tossed. Suppose that he tosses once and quits if he wins but tries once more if he loses on the first toss. Find the probability distribution of the number of rupees the man wins.


The items produced by a company contain 10% defective items. Show that the probability of getting 2 defective items in a sample of 8 items is

\[\frac{28 \times 9^6}{{10}^8} .\]

 


A card is drawn and replaced in an ordinary pack of 52 cards. How many times must a card be drawn so that (i) there is at least an even chance of drawing a heart (ii) the probability of drawing a heart is greater than 3/4?


The mathematics department has 8 graduate assistants who are assigned to the same office. Each assistant is just as likely to study at home as in office. How many desks must there be in the office so that each assistant has a desk at least 90% of the time?


Six coins are tossed simultaneously. Find the probability of getting
(i) 3 heads
(ii) no heads
(iii) at least one head


Assume that the probability that a bomb dropped from an aeroplane will strike a certain target is 0.2. If 6 bombs are dropped, find the probability that at least 2 will strike the target

 

It is known that 60% of mice inoculated with a serum are protected from a certain disease. If 5 mice are inoculated, find the probability that none contract the disease .


It is known that 60% of mice inoculated with a serum are protected from a certain disease. If 5 mice are inoculated, find the probability that more than 3 contract the disease .

 

An experiment succeeds twice as often as it fails. Find the probability that in the next 6 trials there will be at least 4 successes.

 

In a hospital, there are 20 kidney dialysis machines and the chance of any one of them to be out of service during a day is 0.02. Determine the probability that exactly 3 machines will be out of service on the same day.


The probability that a student entering a university will graduate is 0.4. Find the probability that out of 3 students of the university none will graduate 


Ten eggs are drawn successively, with replacement, from a lot containing 10% defective eggs. Find the probability that there is at least one defective egg.


A person buys a lottery ticket in 50 lotteries, in each of which his chance of winning a prize is `1/100`. What is the probability that he will win a prize at least once. 


A person buys a lottery ticket in 50 lotteries, in each of which his chance of winning a prize is \[\frac{1}{100} .\]  What is the probability that he will win a prize at least twice.


A pair of dice is thrown 4 times. If getting a doublet is considered a success, find the probability distribution of the number of successes.


From a lot of 30 bulbs that includes 6 defective bulbs, a sample of 4 bulbs is drawn at random with replacement. Find the probability distribution of the number of defective bulbs.


Find the probability that in 10 throws of a fair die, a score which is a multiple of 3 will be obtained in at least 8 of the throws. 


A factory produces bulbs. The probability that one bulb is defective is \[\frac{1}{50}\] and they are packed in boxes of 10. From a single box, find the probability that none of the bulbs is defective .

 

A box has 20 pens of which 2 are defective. Calculate the probability that out of 5 pens drawn one by one with replacement, at most 2 are defective.


Find the binomial distribution when the sum of its mean and variance for 5 trials is 4.8.

 

Determine the binomial distribution whose mean is 20 and variance 16.

 

In a binomial distribution the sum and product of the mean and the variance are \[\frac{25}{3}\] and \[\frac{50}{3}\]

 respectively. Find the distribution.

 
 

The mean of a binomial distribution is 20 and the standard deviation 4. Calculate the parameters of the binomial distribution.


If the probability of a defective bolt is 0.1, find the (i) mean and (ii) standard deviation for the distribution of bolts in a total of 400 bolts.


Find the binomial distribution whose mean is 5 and variance \[\frac{10}{3} .\]

 

If on an average 9 ships out of 10 arrive safely at ports, find the mean and S.D. of the ships returning safely out of a total of 500 ships.


Find the expected number of boys in a family with 8 children, assuming the sex distribution to be equally probable.


The probability that an item produced by a factory is defective is 0.02. A shipment of 10,000 items is sent to its warehouse. Find the expected number of defective items and the standard deviation.


The mean and variance of a binomial distribution are \[\frac{4}{3}\] and \[\frac{8}{9}\] respectively. Find P (X ≥ 1).

 
 

The mean of a binomial distribution is 10 and its standard deviation is 2; write the value of q.

 

If the mean and variance of a binomial variate X are 2 and 1 respectively, find P (X > 1).

 

If the mean and variance of a binomial distribution are 4 and 3, respectively, find the probability of no success.


If for a binomial distribution P (X = 1) = P (X = 2) = α, write P (X = 4) in terms of α.

 

In a box containing 100 bulbs, 10 are defective. What is the probability that out of a sample of 5 bulbs, none is defective?


If in a binomial distribution n = 4, P (X = 0) = \[\frac{16}{81}\], then P (X = 4) equals

 


A fair coin is tossed 99 times. If X is the number of times head appears, then P (X = r) is maximum when r is


If the mean and variance of a binomial variate X are 2 and 1 respectively, then the probability that X takes a value greater than 1 is


A biased coin with probability p, 0 < p < 1, of heads is tossed until a head appears for the first time. If the probability that the number of tosses required is even is 2/5, then p equals


If X follows a binomial distribution with parameters n = 8 and p = 1/2, then P (|X − 4| ≤ 2) equals


If X follows a binomial distribution with parameters n = 100 and p = 1/3, then P (X = r) is maximum when r =


A fair die is tossed eight times. The probability that a third six is observed in the eighth throw is


A five-digit number is written down at random. The probability that the number is divisible by 5, and no two consecutive digits are identical, is


If the mean and variance of a binomial distribution are 4 and 3, respectively, the probability of getting exactly six successes in this distribution is


For a binomial variate X, if n = 3 and P (X = 1) = 8 P (X = 3), then p =


A coin is tossed n times. The probability of getting at least once is greater than 0.8. Then, the least value of n, is


Mark the correct alternative in the following question:
Suppose a random variable X follows the binomial distribution with parameters n and p, where 0 < p < 1. If \[\frac{P\left( X = r \right)}{P\left( X = n - r \right)}\] is independent of n and r, then p equals


Mark the correct alternative in the following question:
The probability that a person is not a swimmer is 0.3. The probability that out of 5 persons 4 are swimmers is


Mark the correct alternative in the following question:

Which one is not a requirement of a binomial dstribution?


Mark the correct alternative in the following question:

The probability of guessing correctly at least 8 out of 10 answers of a true false type examination is


Five cards are drawn successively with replacement from a well-shuffled pack of 52 cards. What is the probability that  only 3 cards are spades ? 


The probability that a bulb produced by a factory will fuse after 150 days of use is 0.05. Find the probability that out of 5 such bulbs more than one will fuse after 150 days of use 


Find the mean and variance of the random variable X which denotes the number of doublets in four throws of a pair of dice.


For Bernoulli Distribution, state formula for E(X) and V(X).


Suppose a random variable X follows the binomial distribution with parameters n and p, where 0 < p < 1. If P(x = r)/P(x = n – r) is independent of n and r, then p equals ______.


If X follows binomial distribution with parameters n = 5, p and P(X = 2) = 9, P(X = 3), then p = ______.


The mean, median and mode for binomial distribution will be equal when


The sum of n terms of the series `1 + 2(1 + 1/n) + 3(1 + 1/n)^2 + ...` is


If the coefficients of x7 and x8 in `(2 + x/3)^n` are equal, then n is


If in the binomial expansion of (1 + x)n where n is a natural number, the coefficients of the 5th, 6th and 7th terms are in A.P., then n is equal to:


If a fair coin is tossed 10 times. Find the probability of getting at most six heads.


An ordinary dice is rolled for a certain number of times. If the probability of getting an odd number 2 times is equal to the probability of getting an even number 3 times, then the probability of getting an odd number for odd number of times is ______.


The mean and variance of a binomial distribution are α and `α/3` respectively. If P(X = 1) = `4/243`, then P(X = 4 or 5) is equal to ______.


The probability of hitting a target in any shot is 0.2. If 5 shots are fired, find the probability that the target will be hit at least twice.


In three throws with a pair of dice find the chance of throwing doublets at least twice.


A fair coin is tossed 8 times. Find the probability that it shows heads at most once.


A student is given a quiz with 10 true or false questions and he answers by sheer guessing. If X is the number of questions answered correctly write the p.m.f. of X. If the student passes the quiz by getting 7 or more correct answers what is the probability that the student passes the quiz?


If the sum of mean and variance of a binomial distribution is `25/9` for 5 trials, find p.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×