Advertisements
Advertisements
Question
Ten eggs are drawn successively, with replacement, from a lot containing 10% defective eggs. Find the probability that there is at least one defective egg.
Solution
Let X be the number of defective eggs drawn from 10 eggs.
Then, X follows a binomial distribution with \[n = 10\]
Let p be the probability that a drawn egg is defective.
\[\text{ Hence, the distribution is given by } \]
\[P(X = r) = ^{10}{}{C}_r \left( \frac{1}{10} \right)^r \left( \frac{9}{10} \right)^{10 - r} , r = 0, 1, 2 . . . . 10\]
\[P(\text{ there is at least one defective egg } ) = P(X \geq 1) \]
\[ = 1 - P(X = 0) \]
\[ = 1 -^{10}{}{C}_0 \left( \frac{1}{10} \right)^0 \left( \frac{9}{10} \right)^{10 - 0} \]
\[ = 1 - \left( \frac{9}{10} \right)^{10}\]
APPEARS IN
RELATED QUESTIONS
A fair coin is tossed 8 times. Find the probability that it shows heads at least once
On a multiple choice examination with three possible answers for each of the five questions, what is the probability that a candidate would get four or more correct answers just by guessing?
Assume that on an average one telephone number out of 15 called between 2 P.M. and 3 P.M. on week days is busy. What is the probability that if six randomly selected telephone numbers are called, at least 3 of them will be busy?
Suppose that 90% of people are right-handed. What is the probability that at most 6 of a random sample of 10 people are right-handed?
A bag contains 2 white, 3 red and 4 blue balls. Two balls are drawn at random from the bag. If X denotes the number of white balls among the two balls drawn, describe the probability distribution of X.
The items produced by a company contain 10% defective items. Show that the probability of getting 2 defective items in a sample of 8 items is
\[\frac{28 \times 9^6}{{10}^8} .\]
A card is drawn and replaced in an ordinary pack of 52 cards. How many times must a card be drawn so that (i) there is at least an even chance of drawing a heart (ii) the probability of drawing a heart is greater than 3/4?
In a hospital, there are 20 kidney dialysis machines and the chance of any one of them to be out of service during a day is 0.02. Determine the probability that exactly 3 machines will be out of service on the same day.
The probability that a student entering a university will graduate is 0.4. Find the probability that out of 3 students of the university only one will graduate .
Suppose X has a binomial distribution with n = 6 and \[p = \frac{1}{2} .\] Show that X = 3 is the most likely outcome.
If the probability of a defective bolt is 0.1, find the (i) mean and (ii) standard deviation for the distribution of bolts in a total of 400 bolts.
If on an average 9 ships out of 10 arrive safely at ports, find the mean and S.D. of the ships returning safely out of a total of 500 ships.
A die is tossed twice. A 'success' is getting an even number on a toss. Find the variance of number of successes.
The mean of a binomial distribution is 10 and its standard deviation is 2; write the value of q.
A fair die is thrown twenty times. The probability that on the tenth throw the fourth six appears is
Let X denote the number of times heads occur in n tosses of a fair coin. If P (X = 4), P (X= 5) and P (X = 6) are in AP, the value of n is
One hundred identical coins, each with probability p of showing heads are tossed once. If 0 < p < 1 and the probability of heads showing on 50 coins is equal to that of heads showing on 51 coins, the value of p is
The least number of times a fair coin must be tossed so that the probability of getting at least one head is at least 0.8, is
A biased coin with probability p, 0 < p < 1, of heads is tossed until a head appears for the first time. If the probability that the number of tosses required is even is 2/5, then p equals
If X follows a binomial distribution with parameters n = 8 and p = 1/2, then P (|X − 4| ≤ 2) equals
A five-digit number is written down at random. The probability that the number is divisible by 5, and no two consecutive digits are identical, is
In a binomial distribution, the probability of getting success is 1/4 and standard deviation is 3. Then, its mean is
Mark the correct alternative in the following question:
Suppose a random variable X follows the binomial distribution with parameters n and p, where 0 < p < 1. If \[\frac{P\left( X = r \right)}{P\left( X = n - r \right)}\] is independent of n and r, then p equals
Mark the correct alternative in the following question:
The probability of guessing correctly at least 8 out of 10 answers of a true false type examination is
A bag contains 7 red, 5 white and 8 black balls. If four balls are drawn one by one with replacement, what is the probability that all are white ?
Which one is not a requirement of a binomial distribution?
If the coefficients of x7 and x8 in `(2 + x/3)^n` are equal, then n is
If in the binomial expansion of (1 + x)n where n is a natural number, the coefficients of the 5th, 6th and 7th terms are in A.P., then n is equal to:
In a box containing 100 bulbs, 10 are defective. The probability that out of a sample of 5 bulbs, none is defective is:-
A pair of dice is thrown four times. If getting a doublet is considered a success then find the probability of two success.
A box B1 contains 1 white ball and 3 red balls. Another box B2 contains 2 white balls and 3 red balls. If one ball is drawn at random from each of the boxes B1 and B2, then find the probability that the two balls drawn are of the same colour.
An ordinary dice is rolled for a certain number of times. If the probability of getting an odd number 2 times is equal to the probability of getting an even number 3 times, then the probability of getting an odd number for odd number of times is ______.
A fair coin is tossed 6 times. Find the probability of getting heads 4 times.
If the sum of mean and variance of a binomial distribution is `25/9` for 5 trials, find p.
For the binomial distribution X ∼ B(n, p), n = 6 and P(X = 4) = P(X = 2). find p.