English

Assume that on an Average One Telephone Number Out of 15 Called Between 2 P.M. What is the Probability that If Six Randomly Selected Telephone Numbers Are Called, at Least 3 of Them Will Be Busy? - Mathematics

Advertisements
Advertisements

Question

Assume that on an average one telephone number out of 15 called between 2 P.M. and 3 P.M. on week days is busy. What is the probability that if six randomly selected telephone numbers are called, at least 3 of them will be busy?

Solution

Let X be the number of busy calls for 6 randomly selected telephone numbers.
X follows a binomial distribution with n =6 ;

\[p = \text{ one out of } 15 = \frac{1}{15}\text{ and }  q = \frac{14}{15}\]

\[P(X = r) = ^{6}{}{C}_r \left( \frac{1}{15} \right)^r \left( \frac{14}{15} \right)^{6 - r} \]
\[\text{ Probability that at least 3 of them are busy}  = P(X \geq 3) \]
\[ = 1 - {P(X = 0) + P(X = 1) + P(X = 2)}\]
\[ = 1 - \left\{ ^{6}{}{C}_0 \left( \frac{1}{15} \right)^0 \left( \frac{14}{15} \right)^{6 - 0} + ^{6}{}{C}_1 \left( \frac{1}{15} \right)^1 \left( \frac{14}{15} \right)^{6 - 1} + ^{6}{}{C}_2 \left( \frac{1}{15} \right)^2 \left( \frac{14}{15} \right)^{6 - 2} \right\}\]

\[= 1 - \left\{ \left( \frac{14}{15} \right)^6 + \frac{6}{15} \left( \frac{14}{15} \right)^5 + \frac{1}{15} \left( \frac{14}{15} \right)^4 \right\}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 33: Binomial Distribution - Exercise 33.1 [Page 13]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 33 Binomial Distribution
Exercise 33.1 | Q 9 | Page 13

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

A pair of dice is thrown 4 times. If getting a doublet is considered a success, find the probability of two successes.


Five cards are drawn successively with replacement from a well-shuffled deck of 52 cards. What is the probability that

  1. all the five cards are spades?
  2. only 3 cards are spades?
  3. none is a spade?

A couple has two children, Find the probability that both children are males, if it is known that at least one of the children is male.


The probability that a student is not a swimmer is 1/5 . Then the probability that out of five students, four are swimmers is

(A) `""^5C_4 (4/5)^4 1/5`

(B) `(4/5)^4 1/5

(C) `""^5C_1 1/5 (4/5)^4 `

(D) None of these


An experiment succeeds twice as often as it fails. Find the probability that in the next six trials, there will be at least 4 successes.


A fair coin is tossed 8 times. Find the probability that it shows heads exactly 5 times.



Five cards are drawn one by one, with replacement, from a well-shuffled deck of 52 cards. Find the probability that
(i) all the five cards diamonds
(ii) only 3 cards are diamonds
(iii) none is a diamond


A bag contains 7 red, 5 white and 8 black balls. If four balls are drawn one by one with replacement, what is the probability that none is white ?


The items produced by a company contain 10% defective items. Show that the probability of getting 2 defective items in a sample of 8 items is

\[\frac{28 \times 9^6}{{10}^8} .\]

 


Assume that the probability that a bomb dropped from an aeroplane will strike a certain target is 0.2. If 6 bombs are dropped, find the probability that exactly 2 will strike the target .


Assume that the probability that a bomb dropped from an aeroplane will strike a certain target is 0.2. If 6 bombs are dropped, find the probability that at least 2 will strike the target

 

The probability that a student entering a university will graduate is 0.4. Find the probability that out of 3 students of the university none will graduate 


The probability that a student entering a university will graduate is 0.4. Find the probability that out of 3 students of the university only one will graduate .


A pair of dice is thrown 4 times. If getting a doublet is considered a success, find the probability distribution of the number of successes.


Determine the binomial distribution whose mean is 9 and variance 9/4.

 

If on an average 9 ships out of 10 arrive safely at ports, find the mean and S.D. of the ships returning safely out of a total of 500 ships.


In eight throws of a die, 5 or 6 is considered a success. Find the mean number of successes and the standard deviation.


The probability that an item produced by a factory is defective is 0.02. A shipment of 10,000 items is sent to its warehouse. Find the expected number of defective items and the standard deviation.


A dice is thrown thrice. A success is 1 or 6 in a throw. Find the mean and variance of the number of successes.


If a random variable X follows a binomial distribution with mean 3 and variance 3/2, find P (X ≤ 5).


If X follows a binomial distribution with mean 4 and variance 2, find P (X ≥ 5).

 

A die is thrown three times. Let X be 'the number of twos seen'. Find the expectation of X.    


In a binomial distribution, if n = 20 and q = 0.75, then write its mean.

 

If the mean and variance of a random variable X with a binomial distribution are 4 and 2 respectively, find P (X = 1).

 

A fair coin is tossed a fixed number of times. If the probability of getting seven heads is equal to that of getting nine heads, the probability of getting two heads is


One hundred identical coins, each with probability p of showing heads are tossed once. If 0 < p < 1 and the probability of heads showing on 50 coins is equal to that of heads showing on 51 coins, the value of p is


If X follows a binomial distribution with parameters n = 8 and p = 1/2, then P (|X − 4| ≤ 2) equals


In a binomial distribution, the probability of getting success is 1/4 and standard deviation is 3. Then, its mean is


The probability of selecting a male or a female is same. If the probability that in an office of n persons (n − 1) males being selected is  \[\frac{3}{2^{10}}\] , the value of n is

 


Mark the correct alternative in the following question:
Suppose a random variable X follows the binomial distribution with parameters n and p, where 0 < p < 1. If \[\frac{P\left( X = r \right)}{P\left( X = n - r \right)}\] is independent of n and r, then p equals


A bag contains 7 red, 5 white and 8 black balls. If four balls are drawn one by one with replacement, what is the probability that any two are white ?


The probability that a bulb produced by a factory will fuse after 150 days of use is 0.05. Find the probability that out of 5 such bulbs more than one will fuse after 150 days of use 


For Bernoulli Distribution, state formula for E(X) and V(X).


If a fair coin is tossed 10 times. Find the probability of getting at most six heads.


The mean and variance of a binomial distribution are α and `α/3` respectively. If P(X = 1) = `4/243`, then P(X = 4 or 5) is equal to ______.


A fair coin is tossed 6 times. Find the probability of getting heads 4 times.


If X ∼ B(n, p), n = 6 and 9 P(X = 4) = P(X = 2), then find the value of p.


An experiment succeeds thrice as often as it fails. Then in next five trials, find the probability that there will be two successes.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×