English

The Probability that an Item Produced by a Factory is Defective is 0.02. a Shipment of 10,000 Items is Sent to Its Warehouse. Find the Expected Number of Defective Items and the Standard Deviation. - Mathematics

Advertisements
Advertisements

Question

The probability that an item produced by a factory is defective is 0.02. A shipment of 10,000 items is sent to its warehouse. Find the expected number of defective items and the standard deviation.

Solution

Here, n =10,000
Let (the probability of getting a defective item) = 0.02
q =1-0.02 = 0.98

\[\text{Mean = Expected number of defective items } \]

\[ \Rightarrow np = 200\]

\[\text{ Variance}  (npq) = 200(0 . 98) \]

\[ = 196\]

\[\text{ Standard deviation } = \sqrt{\text{ Variance } } = 14\]

\[\text{ So, mean = 200 and standard deviation } = 14\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 33: Binomial Distribution - Exercise 33.2 [Page 25]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 33 Binomial Distribution
Exercise 33.2 | Q 14 | Page 25

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Given that X ~ B(n= 10, p). If E(X) = 8 then the value of

p is ...........

(a) 0.6

(b) 0.7

(c) 0.8

(d) 0.4


A pair of dice is thrown 4 times. If getting a doublet is considered a success, find the probability of two successes.


On a multiple choice examination with three possible answers for each of the five questions, what is the probability that a candidate would get four or more correct answers just by guessing?


A couple has two children, Find the probability that both children are males, if it is known that at least one of the children is male.


A couple has two children, Find the probability that both children are females, if it is known that the elder child is a female.


A bag contains 10 balls, each marked with one of the digits from 0 to 9. If four balls are drawn successively with replacement from the bag, what is the probability that none is marked with the digit 0?


The probability that a bulb produced by a factory will fuse after 150 days of use is 0.05. Find the probability that out of 5 such bulbs none will fuse after 150 days of use 


A bag contains 7 green, 4 white and 5 red balls. If four balls are drawn one by one with replacement, what is the probability that one is red?


Find the probability distribution of the number of sixes in three tosses of a die.

 

The items produced by a company contain 10% defective items. Show that the probability of getting 2 defective items in a sample of 8 items is

\[\frac{28 \times 9^6}{{10}^8} .\]

 


The probability that a certain kind of component will survive a given shock test is \[\frac{3}{4} .\]  Find the probability that among 5 components tested at most 3 will survive .

 

Assume that the probability that a bomb dropped from an aeroplane will strike a certain target is 0.2. If 6 bombs are dropped, find the probability that at least 2 will strike the target

 

Suppose X has a binomial distribution with = 6 and \[p = \frac{1}{2} .\]  Show that X = 3 is the most likely outcome.

 
 

A person buys a lottery ticket in 50 lotteries, in each of which his chance of winning a prize is `1/100`. What is the probability that he will win a prize at least once. 


A person buys a lottery ticket in 50 lotteries, in each of which his chance of winning a prize is \[\frac{1}{100} .\]  What is the probability that he will win a prize at least twice.


How many times must a man toss a fair coin so that the probability of having at least one head is more than 90% ?


A die is thrown 5 times. Find the probability that an odd number will come up exactly three times. 


The probability of a man hitting a target is 0.25. He shoots 7 times. What is the probability of his hitting at least twice?


A factory produces bulbs. The probability that one bulb is defective is \[\frac{1}{50}\] and they are packed in boxes of 10. From a single box, find the probability that exactly two bulbs are defective


Find the expected number of boys in a family with 8 children, assuming the sex distribution to be equally probable.


A dice is thrown thrice. A success is 1 or 6 in a throw. Find the mean and variance of the number of successes.


If the sum of the mean and variance of a binomial distribution for 6 trials is \[\frac{10}{3},\]  find the distribution.

 
 

In a binomial distribution, if n = 20 and q = 0.75, then write its mean.

 

If in a binomial distribution mean is 5 and variance is 4, write the number of trials.

 

A fair coin is tossed a fixed number of times. If the probability of getting seven heads is equal to that of getting nine heads, the probability of getting two heads is


A fair die is thrown twenty times. The probability that on the tenth throw the fourth six appears is


If X is a binomial variate with parameters n and p, where 0 < p < 1 such that \[\frac{P\left( X = r \right)}{P\left( X = n - r \right)}\text{ is } \] independent of n and r, then p equals 


Let X denote the number of times heads occur in n tosses of a fair coin. If P (X = 4), P (X= 5) and P (X = 6) are in AP, the value of n is 


If X follows a binomial distribution with parameters n = 100 and p = 1/3, then P (X = r) is maximum when r =


A bag contains 7 red, 5 white and 8 black balls. If four balls are drawn one by one with replacement, what is the probability that any two are white ?


Suppose a random variable X follows the binomial distribution with parameters n and p, where 0 < p < 1. If P(x = r)/P(x = n – r) is independent of n and r, then p equals ______.


A pair of dice is thrown four times. If getting a doublet is considered a success then find the probability of two success.


If a fair coin is tossed 10 times. Find the probability of getting at most six heads.


If a random variable X follows the Binomial distribution B(5, p) such that P(X = 0) = P(X = 1), then `(P(X = 2))/(P(X = 3))` is equal to ______.


The probability of hitting a target in any shot is 0.2. If 5 shots are fired, find the probability that the target will be hit at least twice.


An experiment succeeds thrice as often as it fails. Then in next five trials, find the probability that there will be two successes.


The mean and variance of binomial distribution are 4 and 2 respectively. Find the probability of two successes.


For the binomial distribution X ∼ B(n, p), n = 6 and P(X = 4) = P(X = 2). find p.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×