English

A Factory Produces Bulbs. the Probability that One Bulb is Defective is 1 50 and They Are Packed in Boxes of 10. from a Single Box, Find the Probability that Exactly Two Bulbs Are Defective - Mathematics

Advertisements
Advertisements

Question

A factory produces bulbs. The probability that one bulb is defective is \[\frac{1}{50}\] and they are packed in boxes of 10. From a single box, find the probability that exactly two bulbs are defective

Sum

Solution

Let getting a defective bulb from a single box is a success.
We have

\[p = \text{ probability of getting a defective bulb}  = \frac{1}{50}\]
\[\text{ Also,}  q = 1 - p = 1 - \frac{1}{50} = \frac{49}{50}\]
\[\text{ Let X denote the number of success in a sample of 10 trials . Then, } \]
\[\text{ X follows binomial distribution with parameters n = 10 and p }  = \frac{1}{50}\]
\[ \therefore P\left( X = r \right) = ^{10}{}{C}_r p^r q^\left( 10 - r \right) = ^{10}{}{C}_r \left( \frac{1}{50} \right)^r \left( \frac{49}{50} \right)^\left( 10 - r \right) = \frac{^{10}{}{C}_r {49}^\left( 10 - r \right)}{{50}^{10}}, \text{ where } r = 0, 1, 2, 3, . . . , 10\]
\[\text{ Now} , \]

\[ \text{ Required probability } = P\left( \text{ exactly two bulbs are defective } \right)\]
\[ = P\left( X = 2 \right)\]
\[ = \frac{^{10}{}{C}_2 {49}^8}{{50}^{10}}\]
\[ = \frac{45 \times {49}^8}{{50}^{10}}\]

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 33: Binomial Distribution - Exercise 33.1 [Page 15]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 33 Binomial Distribution
Exercise 33.1 | Q 53.2 | Page 15

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

The probability that a bulb produced by a factory will fuse after 150 days of use is 0.05. What is the probability that out of 5 such bulbs
(i) none
(ii) not more than one
(iii) more than one
(iv) at least one, will fuse after 150 days of use.


In an examination, 20 questions of true-false type are asked. Suppose a student tosses a fair coin to determine his answer to each question. If the coin falls heads, he answers ‘true’; if it falls tails, he answers ‘false’. Find the probability that he answers at least 12 questions correctly.


Suppose X has a binomial distribution `B(6, 1/2)`. Show that X = 3 is the most likely outcome.

(Hint: P(X = 3) is the maximum among all P (xi), xi = 0, 1, 2, 3, 4, 5, 6)


How many times must a man toss a fair coin so that the probability of having at least one head is more than 90%?


A fair coin is tossed 8 times. Find the probability that it shows heads exactly 5 times.


A fair coin is tossed 9 times. Find the probability that it shows head exactly 5 times.


A bag contains 7 green, 4 white and 5 red balls. If four balls are drawn one by one with replacement, what is the probability that one is red?


Find the probability distribution of the number of sixes in three tosses of a die.

 

A coin is tossed 5 times. If X is the number of heads observed, find the probability distribution of X.

 

An unbiased die is thrown twice. A success is getting a number greater than 4. Find the probability distribution of the number of successes.

 

A man wins a rupee for head and loses a rupee for tail when a coin is tossed. Suppose that he tosses once and quits if he wins but tries once more if he loses on the first toss. Find the probability distribution of the number of rupees the man wins.


The mathematics department has 8 graduate assistants who are assigned to the same office. Each assistant is just as likely to study at home as in office. How many desks must there be in the office so that each assistant has a desk at least 90% of the time?


An unbiased coin is tossed 8 times. Find, by using binomial distribution, the probability of getting at least 6 heads.

 

An experiment succeeds twice as often as it fails. Find the probability that in the next 6 trials there will be at least 4 successes.

 

The probability that a student entering a university will graduate is 0.4. Find the probability that out of 3 students of the university only one will graduate .


A person buys a lottery ticket in 50 lotteries, in each of which his chance of winning a prize is `1/100`. What is the probability that he will win a prize at least once. 


A person buys a lottery ticket in 50 lotteries, in each of which his chance of winning a prize is \[\frac{1}{100} .\]  What is the probability that he will win a prize exactly once.


Find the binomial distribution when the sum of its mean and variance for 5 trials is 4.8.

 

If on an average 9 ships out of 10 arrive safely at ports, find the mean and S.D. of the ships returning safely out of a total of 500 ships.


The mean and variance of a binomial distribution are \[\frac{4}{3}\] and \[\frac{8}{9}\] respectively. Find P (X ≥ 1).

 
 

A die is thrown three times. Let X be 'the number of twos seen'. Find the expectation of X.    


An unbiased coin is tossed 4 times. Find the mean and variance of the number of heads obtained.   


A fair die is thrown twenty times. The probability that on the tenth throw the fourth six appears is


If X is a binomial variate with parameters n and p, where 0 < p < 1 such that \[\frac{P\left( X = r \right)}{P\left( X = n - r \right)}\text{ is } \] independent of n and r, then p equals 


A five-digit number is written down at random. The probability that the number is divisible by 5, and no two consecutive digits are identical, is


A coin is tossed 10 times. The probability of getting exactly six heads is


In a binomial distribution, the probability of getting success is 1/4 and standard deviation is 3. Then, its mean is


A coin is tossed 4 times. The probability that at least one head turns up is


A coin is tossed n times. The probability of getting at least once is greater than 0.8. Then, the least value of n, is


The probability that a bulb produced by a factory will fuse after 150 days of use is 0.05. Find the probability that out of 5 such bulbs more than one will fuse after 150 days of use 


In a multiple-choice examination with three possible answers for each of the five questions, what is the probability that a candidate would get four or more correct answers just by guessing?

For Bernoulli Distribution, state formula for E(X) and V(X).


If in the binomial expansion of (1 + x)n where n is a natural number, the coefficients of the 5th, 6th and 7th terms are in A.P., then n is equal to:


In three throws with a pair of dice find the chance of throwing doublets at least twice.


If the sum of mean and variance of a binomial distribution is `25/9` for 5 trials, find p.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×