Advertisements
Advertisements
Question
A coin is tossed 5 times. If X is the number of heads observed, find the probability distribution of X.
Solution
Let X = number of heads in 5 tosses. Then the binomial distribution for X has n =5,
\[ = \frac{^{5}{}{C}_r}{2^5}\]
\[\text{ Substituting r = 0, 1, 2, 3, 4, 5 we get the following probability disrtribution } . \]
X 0 1 2 3 4 5
\[P(X) \frac{1}{32} \frac{5}{32} \frac{10}{32} \frac{10}{32} \frac{5}{32} \frac{1}{32}\]
APPEARS IN
RELATED QUESTIONS
Given that X ~ B(n= 10, p). If E(X) = 8 then the value of
p is ...........
(a) 0.6
(b) 0.7
(c) 0.8
(d) 0.4
Find the probability of getting 5 exactly twice in 7 throws of a die.
Find the probability of throwing at most 2 sixes in 6 throws of a single die.
It is known that 10% of certain articles manufactured are defective. What is the probability that in a random sample of 12 such articles, 9 are defective?
A couple has two children, Find the probability that both children are males, if it is known that at least one of the children is male.
A couple has two children, Find the probability that both children are females, if it is known that the elder child is a female.
The probability that a student is not a swimmer is 1/5 . Then the probability that out of five students, four are swimmers is
(A) `""^5C_4 (4/5)^4 1/5`
(B) `(4/5)^4 1/5
(C) `""^5C_1 1/5 (4/5)^4 `
(D) None of these
A fair coin is tossed 8 times. Find the probability that it shows heads exactly 5 times.
The probability of a man hitting a target is 1/4. If he fires 7 times, what is the probability of his hitting the target at least twice?
Find the probability distribution of the number of doublets in 4 throws of a pair of dice.
Five dice are thrown simultaneously. If the occurrence of 3, 4 or 5 in a single die is considered a success, find the probability of at least 3 successes.
The probability that a certain kind of component will survive a given shock test is \[\frac{3}{4} .\] Find the probability that among 5 components tested at most 3 will survive .
In a hospital, there are 20 kidney dialysis machines and the chance of any one of them to be out of service during a day is 0.02. Determine the probability that exactly 3 machines will be out of service on the same day.
The probability that a student entering a university will graduate is 0.4. Find the probability that out of 3 students of the university all will graduate .
In a multiple-choice examination with three possible answers for each of the five questions out of which only one is correct, what is the probability that a candidate would get four or more correct answers just by guessing?
A person buys a lottery ticket in 50 lotteries, in each of which his chance of winning a prize is \[\frac{1}{100} .\] What is the probability that he will win a prize at least twice.
A pair of dice is thrown 4 times. If getting a doublet is considered a success, find the probability distribution of the number of successes.
Find the binomial distribution whose mean is 5 and variance \[\frac{10}{3} .\]
If on an average 9 ships out of 10 arrive safely at ports, find the mean and S.D. of the ships returning safely out of a total of 500 ships.
Find the expected number of boys in a family with 8 children, assuming the sex distribution to be equally probable.
In a group of 200 items, if the probability of getting a defective item is 0.2, write the mean of the distribution.
If the mean of a binomial distribution is 20 and its standard deviation is 4, find p.
If the mean and variance of a random variable X with a binomial distribution are 4 and 2 respectively, find P (X = 1).
If the mean and variance of a binomial variate X are 2 and 1 respectively, find P (X > 1).
If for a binomial distribution P (X = 1) = P (X = 2) = α, write P (X = 4) in terms of α.
If in a binomial distribution n = 4, P (X = 0) = \[\frac{16}{81}\], then P (X = 4) equals
A fair coin is tossed 100 times. The probability of getting tails an odd number of times is
A fair coin is tossed 99 times. If X is the number of times head appears, then P (X = r) is maximum when r is
A biased coin with probability p, 0 < p < 1, of heads is tossed until a head appears for the first time. If the probability that the number of tosses required is even is 2/5, then p equals
Fifteen coupons are numbered 1 to 15. Seven coupons are selected at random one at a time with replacement. The probability that the largest number appearing on a selected coupon is 9 is
A bag contains 7 red, 5 white and 8 black balls. If four balls are drawn one by one with replacement, what is the probability that all are white ?
For X ~ B(n, p) and P(X = x) = `""^8"C"_x(1/2)^x (1/2)^(8 - x)`, then state value of n and p
Which one is not a requirement of a binomial distribution?
If X follows binomial distribution with parameters n = 5, p and P(X = 2) = 9, P(X = 3), then p = ______.
The sum of n terms of the series `1 + 2(1 + 1/n) + 3(1 + 1/n)^2 + ...` is
If a random variable X follows the Binomial distribution B(5, p) such that P(X = 0) = P(X = 1), then `(P(X = 2))/(P(X = 3))` is equal to ______.
A fair coin is tossed 6 times. Find the probability of getting heads 4 times.