Advertisements
Advertisements
Question
Five dice are thrown simultaneously. If the occurrence of 3, 4 or 5 in a single die is considered a success, find the probability of at least 3 successes.
Solution
Let X denote the occurrence of 3,4 or 5 in a single die. Then, X follows binomial distribution with n=5.
Let p=probability of getting 3,4, or 5 in a single die .
p = \[\frac{3}{6} = \frac{1}{2}\]
\[q = 1 - \frac{1}{2} = \frac{1}{2} \]
\[P(X = r) = ^{5}{}{C}_r \left( \frac{1}{2} \right)^r \left( \frac{1}{2} \right)^{5 - r} \]
\[P(\text{ at least 3 successes } ) = P(X \geq 3) \]
\[ = P(X = 3) + P(X = 4) + P(X = 5)\]
\[ = ^{5}{}{C}_3 \left( \frac{1}{2} \right)^3 \left( \frac{1}{2} \right)^{5 - 3} + ^{5}{}{C}_4 \left( \frac{1}{2} \right)^4 \left( \frac{1}{2} \right)^{5 - 4} +^{5}{}{C}_5 \left( \frac{1}{2} \right)^5 \left( \frac{1}{2} \right)^{5 - 5} \]
\[ = \frac{^{5}{}{C}_3 + ^{5}{}{C}_4 + ^{5}{}{C}_5}{2^5}\]
\[ = \frac{1}{2}\]
APPEARS IN
RELATED QUESTIONS
A fair coin is tossed 8 times. Find the probability that it shows heads at least once
The probability that a bomb will hit a target is 0.8. Find the probability that out of 10 bombs dropped, exactly 4 will hit the target.
A person buys a lottery ticket in 50 lotteries, in each of which his chance of winning a prize is 1/100. What is the probability that he will in a prize (a) at least once (b) exactly once (c) at least twice?
It is known that 10% of certain articles manufactured are defective. What is the probability that in a random sample of 12 such articles, 9 are defective?
In a box containing 100 bulbs, 10 are defective. The probability that out of a sample of 5 bulbs, none is defective is
(A) 10−1
(B) `(1/2)^5`
(C) `(9/10)^5`
(D) 9/10
A couple has two children, Find the probability that both children are males, if it is known that at least one of the children is male.
A bag contains 2 white, 3 red and 4 blue balls. Two balls are drawn at random from the bag. If X denotes the number of white balls among the two balls drawn, describe the probability distribution of X.
An urn contains four white and three red balls. Find the probability distribution of the number of red balls in three draws with replacement from the urn.
Three cards are drawn successively with replacement from a well shuffled pack of 52 cards. Find the mean and variance of number of red cards.
An unbiased die is thrown twice. A success is getting a number greater than 4. Find the probability distribution of the number of successes.
A man wins a rupee for head and loses a rupee for tail when a coin is tossed. Suppose that he tosses once and quits if he wins but tries once more if he loses on the first toss. Find the probability distribution of the number of rupees the man wins.
Six coins are tossed simultaneously. Find the probability of getting
(i) 3 heads
(ii) no heads
(iii) at least one head
Suppose that a radio tube inserted into a certain type of set has probability 0.2 of functioning more than 500 hours. If we test 4 tubes at random what is the probability that exactly three of these tubes function for more than 500 hours?
The probability that a certain kind of component will survive a given shock test is \[\frac{3}{4} .\] Find the probability that among 5 components tested exactly 2 will survive .
The probability that a student entering a university will graduate is 0.4. Find the probability that out of 3 students of the university none will graduate
Ten eggs are drawn successively, with replacement, from a lot containing 10% defective eggs. Find the probability that there is at least one defective egg.
In a 20-question true-false examination, suppose a student tosses a fair coin to determine his answer to each question. For every head, he answers 'true' and for every tail, he answers 'false'. Find the probability that he answers at least 12 questions correctly.
A person buys a lottery ticket in 50 lotteries, in each of which his chance of winning a prize is `1/100`. What is the probability that he will win a prize at least once.
The probability of a man hitting a target is 0.25. He shoots 7 times. What is the probability of his hitting at least twice?
A factory produces bulbs. The probability that one bulb is defective is \[\frac{1}{50}\] and they are packed in boxes of 10. From a single box, find the probability that exactly two bulbs are defective
A box has 20 pens of which 2 are defective. Calculate the probability that out of 5 pens drawn one by one with replacement, at most 2 are defective.
If the mean and variance of a binomial distribution are respectively 9 and 6, find the distribution.
The mean and variance of a binomial variate with parameters n and p are 16 and 8, respectively. Find P (X = 0), P (X = 1) and P (X ≥ 2).
The probability that an item produced by a factory is defective is 0.02. A shipment of 10,000 items is sent to its warehouse. Find the expected number of defective items and the standard deviation.
A die is thrown three times. Let X be 'the number of twos seen'. Find the expectation of X.
In a group of 200 items, if the probability of getting a defective item is 0.2, write the mean of the distribution.
A rifleman is firing at a distant target and has only 10% chance of hitting it. The least number of rounds he must fire in order to have more than 50% chance of hitting it at least once is
A biased coin with probability p, 0 < p < 1, of heads is tossed until a head appears for the first time. If the probability that the number of tosses required is even is 2/5, then p equals
In a binomial distribution, the probability of getting success is 1/4 and standard deviation is 3. Then, its mean is
A coin is tossed 4 times. The probability that at least one head turns up is
A bag contains 7 red, 5 white and 8 black balls. If four balls are drawn one by one with replacement, what is the probability that all are white ?
A bag contains 7 red, 5 white and 8 black balls. If four balls are drawn one by one with replacement, what is the probability that any two are white ?
The probability that a bulb produced by a factory will fuse after 150 days of use is 0.05. Find the probability that out of 5 such bulbs at least one will fuse after 150 days of use
Determine the binomial distribution where mean is 9 and standard deviation is `3/2` Also, find the probability of obtaining at most one success.
Bernoulli distribution is a particular case of binomial distribution if n = ______
If X follows binomial distribution with parameters n = 5, p and P(X = 2) = 9, P(X = 3), then p = ______.