English

A Bag Contains 2 White, 3 Red and 4 Blue Balls. Two Balls Are Drawn at Random from the Bag.If X Denotes the Number of White Balls Among the Two Balls Drawn, Describe the Probability Distribution of X. - Mathematics

Advertisements
Advertisements

Question

A bag contains 2 white, 3 red and 4 blue balls. Two balls are drawn at random from the bag. If X denotes the number of white balls among the two balls drawn, describe the probability distribution of X.

Sum

Solution

Let X denote the number of white balls when 2 balls are drawn from the bag.
X follows a distribution with values 0,1 or 2.

\[P(X = 0) = P(\text{ All balls non - white } ) = \frac{^{7}{}{C}_2}{^{9}{}{C}_2} = \frac{42}{72} = \frac{21}{36}\]
\[P(X = 1) = P \hspace{0.167em} ( Ist \hspace{0.167em}\text{  ball white and IInd ball non - white } ) \hspace{0.167em} \]
\[ = \frac{^{7}{}{C}_1 ^{2}{}{C}_1}{^{9}{}{C}_2} = \frac{14}{36}\]
\[P(X = 2) = P( \text{ Both balls white} ) = \frac{^{2}{}{C}_2}{^{9}{}{C}_2} = \frac{1}{36}\]
\[\text{ It can be shown in tabular form as follows . } \]
X         0     1    2
\[P(X)  \   \ \frac  {21}{36} \frac{14}{36} \frac{1}{36}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 33: Binomial Distribution - Exercise 33.1 [Page 13]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 33 Binomial Distribution
Exercise 33.1 | Q 20 | Page 13

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

A fair coin is tossed 8 times. Find the probability that it shows heads at least once


The probability that a bomb will hit a target is 0.8. Find the probability that out of 10 bombs dropped, exactly 4 will hit the target.


The probability that a bulb produced by a factory will fuse after 150 days of use is 0.05. What is the probability that out of 5 such bulbs
(i) none
(ii) not more than one
(iii) more than one
(iv) at least one, will fuse after 150 days of use.


A bag consists of 10 balls each marked with one of the digits 0 to 9. If four balls are drawn successively with replacement from the bag, what is the probability that none is marked with the digit 0?


Find the probability of getting 5 exactly twice in 7 throws of a die.


A couple has two children, Find the probability that both children are females, if it is known that the elder child is a female.


In a hurdle race, a player has to cross 10 hurdles. The probability that he will clear each hurdle is 5/6 . What is the probability that he will knock down fewer than 2 hurdles?


Assume that on an average one telephone number out of 15 called between 2 P.M. and 3 P.M. on week days is busy. What is the probability that if six randomly selected telephone numbers are called, at least 3 of them will be busy?


Eight coins are thrown simultaneously. Find the chance of obtaining at least six heads.

 

A bag contains 7 green, 4 white and 5 red balls. If four balls are drawn one by one with replacement, what is the probability that one is red?


An urn contains four white and three red balls. Find the probability distribution of the number of red balls in three draws with replacement from the urn.


A coin is tossed 5 times. If X is the number of heads observed, find the probability distribution of X.

 

A man wins a rupee for head and loses a rupee for tail when a coin is tossed. Suppose that he tosses once and quits if he wins but tries once more if he loses on the first toss. Find the probability distribution of the number of rupees the man wins.


The mathematics department has 8 graduate assistants who are assigned to the same office. Each assistant is just as likely to study at home as in office. How many desks must there be in the office so that each assistant has a desk at least 90% of the time?


Assume that the probability that a bomb dropped from an aeroplane will strike a certain target is 0.2. If 6 bombs are dropped, find the probability that exactly 2 will strike the target .


The probability that a student entering a university will graduate is 0.4. Find the probability that out of 3 students of the university none will graduate 


The probability of a shooter hitting a target is \[\frac{3}{4} .\] How many minimum number of times must he/she fire so that the probability of hitting the target at least once is more than 0.99?

 

From a lot of 30 bulbs that includes 6 defective bulbs, a sample of 4 bulbs is drawn at random with replacement. Find the probability distribution of the number of defective bulbs.


A die is thrown 5 times. Find the probability that an odd number will come up exactly three times. 


A factory produces bulbs. The probability that one bulb is defective is \[\frac{1}{50}\] and they are packed in boxes of 10. From a single box, find the probability that exactly two bulbs are defective


A box has 20 pens of which 2 are defective. Calculate the probability that out of 5 pens drawn one by one with replacement, at most 2 are defective.


If on an average 9 ships out of 10 arrive safely at ports, find the mean and S.D. of the ships returning safely out of a total of 500 ships.


The mean and variance of a binomial variate with parameters n and p are 16 and 8, respectively. Find P (X = 0), P (X = 1) and P (X ≥ 2).

 

The probability that an item produced by a factory is defective is 0.02. A shipment of 10,000 items is sent to its warehouse. Find the expected number of defective items and the standard deviation.


In a group of 200 items, if the probability of getting a defective item is 0.2, write the mean of the distribution.


If X is a binomial variate with parameters n and p, where 0 < p < 1 such that \[\frac{P\left( X = r \right)}{P\left( X = n - r \right)}\text{ is } \] independent of n and r, then p equals 


If the mean and variance of a binomial variate X are 2 and 1 respectively, then the probability that X takes a value greater than 1 is


If X follows a binomial distribution with parameters n = 8 and p = 1/2, then P (|X − 4| ≤ 2) equals


A five-digit number is written down at random. The probability that the number is divisible by 5, and no two consecutive digits are identical, is


The probability of selecting a male or a female is same. If the probability that in an office of n persons (n − 1) males being selected is  \[\frac{3}{2^{10}}\] , the value of n is

 


The probability that a bulb produced by a factory will fuse after 150 days of use is 0.05. Find the probability that out of 5 such bulbs not more than one will fuse after 150 days of use 


The mean, median and mode for binomial distribution will be equal when


If x4 occurs in the tth term in the expansion of `(x^4 + 1/x^3)^15`, then the value oft is equal to:


A box B1 contains 1 white ball and 3 red balls. Another box B2 contains 2 white balls and 3 red balls. If one ball is drawn at random from each of the boxes B1 and B2, then find the probability that the two balls drawn are of the same colour.


In three throws with a pair of dice find the chance of throwing doublets at least twice.


If the sum of mean and variance of a binomial distribution is `25/9` for 5 trials, find p.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×