मराठी

A Bag Contains 2 White, 3 Red and 4 Blue Balls. Two Balls Are Drawn at Random from the Bag.If X Denotes the Number of White Balls Among the Two Balls Drawn, Describe the Probability Distribution of X. - Mathematics

Advertisements
Advertisements

प्रश्न

A bag contains 2 white, 3 red and 4 blue balls. Two balls are drawn at random from the bag. If X denotes the number of white balls among the two balls drawn, describe the probability distribution of X.

बेरीज

उत्तर

Let X denote the number of white balls when 2 balls are drawn from the bag.
X follows a distribution with values 0,1 or 2.

\[P(X = 0) = P(\text{ All balls non - white } ) = \frac{^{7}{}{C}_2}{^{9}{}{C}_2} = \frac{42}{72} = \frac{21}{36}\]
\[P(X = 1) = P \hspace{0.167em} ( Ist \hspace{0.167em}\text{  ball white and IInd ball non - white } ) \hspace{0.167em} \]
\[ = \frac{^{7}{}{C}_1 ^{2}{}{C}_1}{^{9}{}{C}_2} = \frac{14}{36}\]
\[P(X = 2) = P( \text{ Both balls white} ) = \frac{^{2}{}{C}_2}{^{9}{}{C}_2} = \frac{1}{36}\]
\[\text{ It can be shown in tabular form as follows . } \]
X         0     1    2
\[P(X)  \   \ \frac  {21}{36} \frac{14}{36} \frac{1}{36}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 33: Binomial Distribution - Exercise 33.1 [पृष्ठ १३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 33 Binomial Distribution
Exercise 33.1 | Q 20 | पृष्ठ १३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

There are 5% defective items in a large bulk of items. What is the probability that a sample of 10 items will include not more than one defective item?


On a multiple choice examination with three possible answers for each of the five questions, what is the probability that a candidate would get four or more correct answers just by guessing?


It is known that 10% of certain articles manufactured are defective. What is the probability that in a random sample of 12 such articles, 9 are defective?


A bag contains 10 balls, each marked with one of the digits from 0 to 9. If four balls are drawn successively with replacement from the bag, what is the probability that none is marked with the digit 0?


A bag contains 7 green, 4 white and 5 red balls. If four balls are drawn one by one with replacement, what is the probability that one is red?


The mathematics department has 8 graduate assistants who are assigned to the same office. Each assistant is just as likely to study at home as in office. How many desks must there be in the office so that each assistant has a desk at least 90% of the time?


The probability that a certain kind of component will survive a given shock test is \[\frac{3}{4} .\]  Find the probability that among 5 components tested exactly 2 will survive .

 

Assume that the probability that a bomb dropped from an aeroplane will strike a certain target is 0.2. If 6 bombs are dropped, find the probability that exactly 2 will strike the target .


Assume that the probability that a bomb dropped from an aeroplane will strike a certain target is 0.2. If 6 bombs are dropped, find the probability that at least 2 will strike the target

 

An experiment succeeds twice as often as it fails. Find the probability that in the next 6 trials there will be at least 4 successes.

 

The probability that a student entering a university will graduate is 0.4. Find the probability that out of 3 students of the university only one will graduate .


The probability of a shooter hitting a target is \[\frac{3}{4} .\] How many minimum number of times must he/she fire so that the probability of hitting the target at least once is more than 0.99?

 

How many times must a man toss a fair coin so that the probability of having at least one head is more than 80% ?


Find the probability that in 10 throws of a fair die, a score which is a multiple of 3 will be obtained in at least 8 of the throws. 


If the probability of a defective bolt is 0.1, find the (i) mean and (ii) standard deviation for the distribution of bolts in a total of 400 bolts.


A die is tossed twice. A 'success' is getting an even number on a toss. Find the variance of number of successes.     


If the mean and variance of a binomial variate X are 2 and 1 respectively, find P (X > 1).

 

If in a binomial distribution n = 4 and P (X = 0) = \[\frac{16}{81}\] , find q.

 
 

If the mean and variance of a binomial distribution are 4 and 3, respectively, find the probability of no success.


An unbiased coin is tossed 4 times. Find the mean and variance of the number of heads obtained.   


If X follows binomial distribution with parameters n = 5, p and P(X = 2) = 9P(X = 3), then find the value of p.  


In a box containing 100 bulbs, 10 are defective. What is the probability that out of a sample of 5 bulbs, none is defective?


If in a binomial distribution n = 4, P (X = 0) = \[\frac{16}{81}\], then P (X = 4) equals

 


A fair coin is tossed 100 times. The probability of getting tails an odd number of times is


If X is a binomial variate with parameters n and p, where 0 < p < 1 such that \[\frac{P\left( X = r \right)}{P\left( X = n - r \right)}\text{ is } \] independent of n and r, then p equals 


One hundred identical coins, each with probability p of showing heads are tossed once. If 0 < p < 1 and the probability of heads showing on 50 coins is equal to that of heads showing on 51 coins, the value of p is


A fair coin is tossed 99 times. If X is the number of times head appears, then P (X = r) is maximum when r is


A biased coin with probability p, 0 < p < 1, of heads is tossed until a head appears for the first time. If the probability that the number of tosses required is even is 2/5, then p equals


A five-digit number is written down at random. The probability that the number is divisible by 5, and no two consecutive digits are identical, is


A bag contains 7 red, 5 white and 8 black balls. If four balls are drawn one by one with replacement, what is the probability that all are white ? 


The probability that a bulb produced by a factory will fuse after 150 days of use is 0.05. Find the probability that out of 5 such bulbs at least one will fuse after 150 days of use 


If X follows binomial distribution with parameters n = 5, p and P(X = 2) = 9, P(X = 3), then p = ______.


The sum of n terms of the series `1 + 2(1 + 1/n) + 3(1 + 1/n)^2 + ...` is


If the sum of mean and variance of a binomial distribution is `25/9` for 5 trials, find p.


If X ∼ B(n, p), n = 6 and 9 P(X = 4) = P(X = 2), then find the value of p.


The mean and variance of binomial distribution are 4 and 2 respectively. Find the probability of two successes.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×