मराठी

If in a Binomial Distribution N = 4, P (X = 0) = 16 81 , Then P (X = 4) Equals (A) 1 16 P (B) 1 81(C) 1 27 (D) 1 8 - Mathematics

Advertisements
Advertisements

प्रश्न

If in a binomial distribution n = 4, P (X = 0) = \[\frac{16}{81}\], then P (X = 4) equals

 

पर्याय

  • \[\frac{1}{16}\]

     
  • \[\frac{1}{81}\]

     
  •  \[\frac{1}{27}\]

     
  •  \[\frac{1}{8}\]

     
MCQ

उत्तर

\[\frac{1}{81}\] In the given binomial distribution, = 4 and

\[P(X = 0) = \frac{16}{81} \]
\[\text{ Binomial distribution is given by } \]
\[P(X = 0) =^ {4}{}{C}_0 \ p^0 q^{4 - 0} = q^4 \]
\[\text{ We know that P } (X = 0) = \frac{16}{81} \]
\[ \therefore q^4 = \frac{16}{81}\]
\[ \Rightarrow q^4 = \left( \frac{2}{3} \right)^4 \]
\[ \Rightarrow q = \frac{2}{3}\]
\[ \therefore p = 1 - \frac{2}{3} = \frac{1}{3}\]
\[\text{ Then }  , P(X = 4) = ^{4}{}{C}_4 \ p^4 q^{4 - 4} \]
\[ = \left( \frac{1}{3} \right)^4 \]
\[ = \frac{1}{81}\]

 
 
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 33: Binomial Distribution - MCQ [पृष्ठ २८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 33 Binomial Distribution
MCQ | Q 2 | पृष्ठ २८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Given X ~ B (n, p)
If n = 10 and p = 0.4, find E(X) and var (X).


A pair of dice is thrown 4 times. If getting a doublet is considered a success, find the probability of two successes.


The probability that a bulb produced by a factory will fuse after 150 days of use is 0.05. What is the probability that out of 5 such bulbs
(i) none
(ii) not more than one
(iii) more than one
(iv) at least one, will fuse after 150 days of use.


In an examination, 20 questions of true-false type are asked. Suppose a student tosses a fair coin to determine his answer to each question. If the coin falls heads, he answers ‘true’; if it falls tails, he answers ‘false’. Find the probability that he answers at least 12 questions correctly.


Suppose X has a binomial distribution `B(6, 1/2)`. Show that X = 3 is the most likely outcome.

(Hint: P(X = 3) is the maximum among all P (xi), xi = 0, 1, 2, 3, 4, 5, 6)


In a hurdle race, a player has to cross 10 hurdles. The probability that he will clear each hurdle is 5/6 . What is the probability that he will knock down fewer than 2 hurdles?


A fair coin is tossed 8 times. Find the probability that it shows heads exactly 5 times.


In a large bulk of items, 5 percent of the items are defective. What is the probability that a sample of 10 items will include not more than one defective item?

 

A coin is tossed 5 times. If X is the number of heads observed, find the probability distribution of X.

 

A card is drawn and replaced in an ordinary pack of 52 cards. How many times must a card be drawn so that (i) there is at least an even chance of drawing a heart (ii) the probability of drawing a heart is greater than 3/4?


It is known that 60% of mice inoculated with a serum are protected from a certain disease. If 5 mice are inoculated, find the probability that none contract the disease .


The probability that a student entering a university will graduate is 0.4. Find the probability that out of 3 students of the university only one will graduate .


Suppose X has a binomial distribution with = 6 and \[p = \frac{1}{2} .\]  Show that X = 3 is the most likely outcome.

 
 

A pair of dice is thrown 4 times. If getting a doublet is considered a success, find the probability distribution of the number of successes.


Find the probability that in 10 throws of a fair die, a score which is a multiple of 3 will be obtained in at least 8 of the throws. 


The probability of a man hitting a target is 0.25. He shoots 7 times. What is the probability of his hitting at least twice?


A box has 20 pens of which 2 are defective. Calculate the probability that out of 5 pens drawn one by one with replacement, at most 2 are defective.


If the mean and variance of a binomial distribution are respectively 9 and 6, find the distribution.


If the mean and variance of a random variable X with a binomial distribution are 4 and 2 respectively, find P (X = 1).

 

An unbiased coin is tossed 4 times. Find the mean and variance of the number of heads obtained.   


If X is a binomial variate with parameters n and p, where 0 < p < 1 such that \[\frac{P\left( X = r \right)}{P\left( X = n - r \right)}\text{ is } \] independent of n and r, then p equals 


If X follows a binomial distribution with parameters n = 100 and p = 1/3, then P (X = r) is maximum when r =


A coin is tossed 10 times. The probability of getting exactly six heads is


A coin is tossed 4 times. The probability that at least one head turns up is


For a binomial variate X, if n = 3 and P (X = 1) = 8 P (X = 3), then p =


A coin is tossed n times. The probability of getting at least once is greater than 0.8. Then, the least value of n, is


Mark the correct alternative in the following question:
The probability that a person is not a swimmer is 0.3. The probability that out of 5 persons 4 are swimmers is


Mark the correct alternative in the following question:

Which one is not a requirement of a binomial dstribution?


Bernoulli distribution is a particular case of binomial distribution if n = ______


For X ~ B(n, p) and P(X = x) = `""^8"C"_x(1/2)^x (1/2)^(8 - x)`, then state value of n and p


Suppose a random variable X follows the binomial distribution with parameters n and p, where 0 < p < 1. If P(x = r)/P(x = n – r) is independent of n and r, then p equals ______.


If in the binomial expansion of (1 + x)n where n is a natural number, the coefficients of the 5th, 6th and 7th terms are in A.P., then n is equal to:


In a box containing 100 bulbs, 10 are defective. The probability that out of a sample of 5 bulbs, none is defective is:-


If a random variable X follows the Binomial distribution B(5, p) such that P(X = 0) = P(X = 1), then `(P(X = 2))/(P(X = 3))` is equal to ______.


A student is given a quiz with 10 true or false questions and he answers by sheer guessing. If X is the number of questions answered correctly write the p.m.f. of X. If the student passes the quiz by getting 7 or more correct answers what is the probability that the student passes the quiz?


If X ∼ B(n, p), n = 6 and 9 P(X = 4) = P(X = 2), then find the value of p.


An experiment succeeds thrice as often as it fails. Then in next five trials, find the probability that there will be two successes.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×