Advertisements
Advertisements
प्रश्न
The probability that a student entering a university will graduate is 0.4. Find the probability that out of 3 students of the university only one will graduate .
उत्तर
Let X be the number of students that graduate from among 3 students.
Let p=probability that a student entering a university will graduate.
Here , n =3, p=0.4 and q = 0.6
Hence, the distribution is given by
APPEARS IN
संबंधित प्रश्न
The probability that a bomb will hit a target is 0.8. Find the probability that out of 10 bombs dropped, exactly 4 will hit the target.
A bag consists of 10 balls each marked with one of the digits 0 to 9. If four balls are drawn successively with replacement from the bag, what is the probability that none is marked with the digit 0?
A couple has two children, Find the probability that both children are females, if it is known that the elder child is a female.
In a hurdle race, a player has to cross 10 hurdles. The probability that he will clear each hurdle is 5/6 . What is the probability that he will knock down fewer than 2 hurdles?
An experiment succeeds twice as often as it fails. Find the probability that in the next six trials, there will be at least 4 successes.
A bag contains 7 red, 5 white and 8 black balls. If four balls are drawn one by one with replacement, what is the probability that none is white ?
An urn contains four white and three red balls. Find the probability distribution of the number of red balls in three draws with replacement from the urn.
Three cards are drawn successively with replacement from a well shuffled pack of 52 cards. Find the mean and variance of number of red cards.
A coin is tossed 5 times. If X is the number of heads observed, find the probability distribution of X.
A man wins a rupee for head and loses a rupee for tail when a coin is tossed. Suppose that he tosses once and quits if he wins but tries once more if he loses on the first toss. Find the probability distribution of the number of rupees the man wins.
A card is drawn and replaced in an ordinary pack of 52 cards. How many times must a card be drawn so that (i) there is at least an even chance of drawing a heart (ii) the probability of drawing a heart is greater than 3/4?
The mathematics department has 8 graduate assistants who are assigned to the same office. Each assistant is just as likely to study at home as in office. How many desks must there be in the office so that each assistant has a desk at least 90% of the time?
Assume that the probability that a bomb dropped from an aeroplane will strike a certain target is 0.2. If 6 bombs are dropped, find the probability that exactly 2 will strike the target .
Assume that the probability that a bomb dropped from an aeroplane will strike a certain target is 0.2. If 6 bombs are dropped, find the probability that at least 2 will strike the target
The probability that a student entering a university will graduate is 0.4. Find the probability that out of 3 students of the university none will graduate
The probability that a student entering a university will graduate is 0.4. Find the probability that out of 3 students of the university all will graduate .
Ten eggs are drawn successively, with replacement, from a lot containing 10% defective eggs. Find the probability that there is at least one defective egg.
Suppose X has a binomial distribution with n = 6 and \[p = \frac{1}{2} .\] Show that X = 3 is the most likely outcome.
The probability of a shooter hitting a target is \[\frac{3}{4} .\] How many minimum number of times must he/she fire so that the probability of hitting the target at least once is more than 0.99?
A factory produces bulbs. The probability that one bulb is defective is \[\frac{1}{50}\] and they are packed in boxes of 10. From a single box, find the probability that more than 8 bulbs work properly
Determine the binomial distribution whose mean is 20 and variance 16.
The mean and variance of a binomial variate with parameters n and p are 16 and 8, respectively. Find P (X = 0), P (X = 1) and P (X ≥ 2).
In eight throws of a die, 5 or 6 is considered a success. Find the mean number of successes and the standard deviation.
Find the expected number of boys in a family with 8 children, assuming the sex distribution to be equally probable.
If X follows a binomial distribution with mean 4 and variance 2, find P (X ≥ 5).
The mean and variance of a binomial distribution are \[\frac{4}{3}\] and \[\frac{8}{9}\] respectively. Find P (X ≥ 1).
If the mean and variance of a binomial distribution are 4 and 3, respectively, find the probability of no success.
A fair die is thrown twenty times. The probability that on the tenth throw the fourth six appears is
If X is a binomial variate with parameters n and p, where 0 < p < 1 such that \[\frac{P\left( X = r \right)}{P\left( X = n - r \right)}\text{ is } \] independent of n and r, then p equals
Let X denote the number of times heads occur in n tosses of a fair coin. If P (X = 4), P (X= 5) and P (X = 6) are in AP, the value of n is
A fair coin is tossed 99 times. If X is the number of times head appears, then P (X = r) is maximum when r is
In a binomial distribution, the probability of getting success is 1/4 and standard deviation is 3. Then, its mean is
A bag contains 7 red, 5 white and 8 black balls. If four balls are drawn one by one with replacement, what is the probability that any two are white ?
The probability that a bulb produced by a factory will fuse after 150 days of use is 0.05. Find the probability that out of 5 such bulbs not more than one will fuse after 150 days of use
One of the condition of Bernoulli trials is that the trials are independent of each other.
A pair of dice is thrown four times. If getting a doublet is considered a success then find the probability of two success.
If a random variable X follows the Binomial distribution B (33, p) such that 3P(X = 0) = P(X = 1), then the value of `(P(X = 15))/(P(X = 18)) - (P(X = 16))/(P(X = 17))` is equal to ______.