Advertisements
Advertisements
प्रश्न
Assume that the probability that a bomb dropped from an aeroplane will strike a certain target is 0.2. If 6 bombs are dropped, find the probability that exactly 2 will strike the target .
उत्तर
Let X be the number of bombs that hit the target.
Then, X follows a binomial distribution with n = 6
Let p be the probability that a bomb dropped from an aeroplane will strike the target.
\[\therefore p = 0 . 2 \text{ and } q = 0 . 8\]
\[\text{ Hence, the distribution is given by } \]
\[P(X = r) = ^{6}{}{C}_r \left( 0 . 2 \right)^r \left( 0 . 8 \right)^{6 - r} \]
P \[(\text{ exactly 2 will strike the target } ) = P(X = 2) \]
\[ = ^{6}{}{C}_2 (0 . 2 )^2 (0 . 8 )^4 \]
\[ = 15(0 . 04)\left( 0 . 4096 \right)\]
\[ = 0 . 2458\]
APPEARS IN
संबंधित प्रश्न
Given that X ~ B(n= 10, p). If E(X) = 8 then the value of
p is ...........
(a) 0.6
(b) 0.7
(c) 0.8
(d) 0.4
How many times must a man toss a fair coin so that the probability of having at least one head is more than 90%?
A fair coin is tossed 9 times. Find the probability that it shows head exactly 5 times.
The probability that a bulb produced by a factory will fuse after 150 days of use is 0.05. Find the probability that out of 5 such bulbs none will fuse after 150 days of use
Find the probability distribution of the number of sixes in three tosses of a die.
A coin is tossed 5 times. If X is the number of heads observed, find the probability distribution of X.
An unbiased die is thrown twice. A success is getting a number greater than 4. Find the probability distribution of the number of successes.
The probability that a student entering a university will graduate is 0.4. Find the probability that out of 3 students of the university none will graduate
The probability that a student entering a university will graduate is 0.4. Find the probability that out of 3 students of the university all will graduate .
A person buys a lottery ticket in 50 lotteries, in each of which his chance of winning a prize is \[\frac{1}{100} .\] What is the probability that he will win a prize at least twice.
The probability of a shooter hitting a target is \[\frac{3}{4} .\] How many minimum number of times must he/she fire so that the probability of hitting the target at least once is more than 0.99?
How many times must a man toss a fair coin so that the probability of having at least one head is more than 80% ?
From a lot of 30 bulbs that includes 6 defective bulbs, a sample of 4 bulbs is drawn at random with replacement. Find the probability distribution of the number of defective bulbs.
A factory produces bulbs. The probability that one bulb is defective is \[\frac{1}{50}\] and they are packed in boxes of 10. From a single box, find the probability that none of the bulbs is defective .
Can the mean of a binomial distribution be less than its variance?
If on an average 9 ships out of 10 arrive safely at ports, find the mean and S.D. of the ships returning safely out of a total of 500 ships.
A die is thrown three times. Let X be 'the number of twos seen'. Find the expectation of X.
The mean of a binomial distribution is 10 and its standard deviation is 2; write the value of q.
If the mean and variance of a binomial distribution are 4 and 3, respectively, find the probability of no success.
One hundred identical coins, each with probability p of showing heads are tossed once. If 0 < p < 1 and the probability of heads showing on 50 coins is equal to that of heads showing on 51 coins, the value of p is
A fair coin is tossed 99 times. If X is the number of times head appears, then P (X = r) is maximum when r is
If X follows a binomial distribution with parameters n = 8 and p = 1/2, then P (|X − 4| ≤ 2) equals
If X follows a binomial distribution with parameters n = 100 and p = 1/3, then P (X = r) is maximum when r =
A coin is tossed 10 times. The probability of getting exactly six heads is
If the mean and variance of a binomial distribution are 4 and 3, respectively, the probability of getting exactly six successes in this distribution is
Mark the correct alternative in the following question:
Which one is not a requirement of a binomial dstribution?
Mark the correct alternative in the following question:
The probability of guessing correctly at least 8 out of 10 answers of a true false type examination is
Five cards are drawn successively with replacement from a well-shuffled pack of 52 cards. What is the probability that none is a spade ?
The probability that a bulb produced by a factory will fuse after 150 days of use is 0.05. Find the probability that out of 5 such bulbs not more than one will fuse after 150 days of use
The probability that a bulb produced by a factory will fuse after 150 days of use is 0.05. Find the probability that out of 5 such bulbs at least one will fuse after 150 days of use
Find the mean and variance of the random variable X which denotes the number of doublets in four throws of a pair of dice.
For Bernoulli Distribution, state formula for E(X) and V(X).
For X ~ B(n, p) and P(X = x) = `""^8"C"_x(1/2)^x (1/2)^(8 - x)`, then state value of n and p
Suppose a random variable X follows the binomial distribution with parameters n and p, where 0 < p < 1. If P(x = r)/P(x = n – r) is independent of n and r, then p equals ______.
If X follows binomial distribution with parameters n = 5, p and P(X = 2) = 9, P(X = 3), then p = ______.
The mean, median and mode for binomial distribution will be equal when
The sum of n terms of the series `1 + 2(1 + 1/n) + 3(1 + 1/n)^2 + ...` is
If x4 occurs in the tth term in the expansion of `(x^4 + 1/x^3)^15`, then the value oft is equal to: