मराठी

The Probability that a Bulb Produced by a Factory Will Fuse After 150 Days of Use is 0.05. Find the Probability that Out of 5 Such Bulbs Not More than One Will Fuse After 150 Days of Use - Mathematics

Advertisements
Advertisements

प्रश्न

The probability that a bulb produced by a factory will fuse after 150 days of use is 0.05. Find the probability that out of 5 such bulbs not more than one will fuse after 150 days of use 

बेरीज

उत्तर

Let be the number of bulbs that fuse after 150 days.
X follows a binomial distribution with n = 5,

\[p = 0 . 05 \text{ and }  q = 0 . 95\]

\[\text{ Or } p = \frac{1}{20}\text{ and } q = \frac{19}{20}\]

\[P(X = r) = ^{5}{}{C}_r \left( \frac{1}{20} \right)^r \left( \frac{19}{20} \right)^{5 - r} \]

\[\text{ Probability (not more than 1 will fuse after 150 days of use } ) = P(X \leq 1) \]

\[ = P(X = 0) + P(X = 1) \]

\[ = \left( \frac{19}{20} \right)^5 + 5 C_1 \left( \frac{1}{20} \right)^1 \left( \frac{19}{20} \right)^{5 - 1} \]

\[ = \left( \frac{19}{20} \right)^4 \left\{ \frac{19}{20} + \frac{5}{20} \right\} \]

\[ = \frac{6}{5} \left( \frac{19}{20} \right)^4 \]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 33: Binomial Distribution - Exercise 33.1 [पृष्ठ १३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 33 Binomial Distribution
Exercise 33.1 | Q 17.2 | पृष्ठ १३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

A bag consists of 10 balls each marked with one of the digits 0 to 9. If four balls are drawn successively with replacement from the bag, what is the probability that none is marked with the digit 0?


In an examination, 20 questions of true-false type are asked. Suppose a student tosses a fair coin to determine his answer to each question. If the coin falls heads, he answers ‘true’; if it falls tails, he answers ‘false’. Find the probability that he answers at least 12 questions correctly.


In a box containing 100 bulbs, 10 are defective. The probability that out of a sample of 5 bulbs, none is defective is

(A) 10−1

(B) `(1/2)^5`

(C) `(9/10)^5`

(D) 9/10


A couple has two children, Find the probability that both children are females, if it is known that the elder child is a female.


Suppose that 90% of people are right-handed. What is the probability that at most 6 of a random sample of 10 people are right-handed?


A box contains 100 tickets, each bearing one of the numbers from 1 to 100. If 5 tickets are drawn successively with replacement from the box, find the probability that all the tickets bear numbers divisible by 10.


The probability that a bulb produced by a factory will fuse after 150 days of use is 0.05. Find the probability that out of 5 such bulbs none will fuse after 150 days of use 


A coin is tossed 5 times. If X is the number of heads observed, find the probability distribution of X.

 

An unbiased die is thrown twice. A success is getting a number greater than 4. Find the probability distribution of the number of successes.

 

A card is drawn and replaced in an ordinary pack of 52 cards. How many times must a card be drawn so that (i) there is at least an even chance of drawing a heart (ii) the probability of drawing a heart is greater than 3/4?


An unbiased coin is tossed 8 times. Find, by using binomial distribution, the probability of getting at least 6 heads.

 

Assume that the probability that a bomb dropped from an aeroplane will strike a certain target is 0.2. If 6 bombs are dropped, find the probability that exactly 2 will strike the target .


The probability that a student entering a university will graduate is 0.4. Find the probability that out of 3 students of the university none will graduate 


The probability that a student entering a university will graduate is 0.4. Find the probability that out of 3 students of the university all will graduate .

 

How many times must a man toss a fair coin so that the probability of having at least one head is more than 80% ?


Can the mean of a binomial distribution be less than its variance?

 

If the mean and variance of a binomial distribution are respectively 9 and 6, find the distribution.


If the probability of a defective bolt is 0.1, find the (i) mean and (ii) standard deviation for the distribution of bolts in a total of 400 bolts.


The mean and variance of a binomial variate with parameters n and p are 16 and 8, respectively. Find P (X = 0), P (X = 1) and P (X ≥ 2).

 

Find the expected number of boys in a family with 8 children, assuming the sex distribution to be equally probable.


A die is thrown three times. Let X be 'the number of twos seen'. Find the expectation of X.    


In a group of 200 items, if the probability of getting a defective item is 0.2, write the mean of the distribution.


If the mean and variance of a binomial distribution are 4 and 3, respectively, find the probability of no success.


A fair coin is tossed 100 times. The probability of getting tails an odd number of times is


One hundred identical coins, each with probability p of showing heads are tossed once. If 0 < p < 1 and the probability of heads showing on 50 coins is equal to that of heads showing on 51 coins, the value of p is


The probability of selecting a male or a female is same. If the probability that in an office of n persons (n − 1) males being selected is  \[\frac{3}{2^{10}}\] , the value of n is

 


Mark the correct alternative in the following question:
Suppose a random variable X follows the binomial distribution with parameters n and p, where 0 < p < 1. If \[\frac{P\left( X = r \right)}{P\left( X = n - r \right)}\] is independent of n and r, then p equals


Five cards are drawn successively with replacement from a well-shuffled pack of 52 cards. What is the probability that  only 3 cards are spades ? 


Find the mean and variance of the random variable X which denotes the number of doublets in four throws of a pair of dice.


One of the condition of Bernoulli trials is that the trials are independent of each other.


Which one is not a requirement of a binomial distribution?


If a fair coin is tossed 10 times. Find the probability of getting at most six heads.


If a random variable X follows the Binomial distribution B(5, p) such that P(X = 0) = P(X = 1), then `(P(X = 2))/(P(X = 3))` is equal to ______.


A student is given a quiz with 10 true or false questions and he answers by sheer guessing. If X is the number of questions answered correctly write the p.m.f. of X. If the student passes the quiz by getting 7 or more correct answers what is the probability that the student passes the quiz?


A fair coin is tossed 6 times. Find the probability of getting heads 4 times.


For the binomial distribution X ∼ B(n, p), n = 6 and P(X = 4) = P(X = 2). find p.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×